Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, CA, USA.
Nat Plants. 2022 May;8(5):561-573. doi: 10.1038/s41477-022-01145-7. Epub 2022 Apr 28.
Strigolactones (SLs) are a class of plant hormones that regulate numerous processes of growth and development. SL perception and signal activation involves interaction between F-box E3 ubiquitin ligase D3/MAX2 and DWARF14 (D14) α/β-hydrolase in a SL-dependent manner and targeting of D53/SMXL6/7/8 transcriptional repressors (SMXLs) for proteasome-mediated degradation. D3/MAX2 has been shown to exist in multiple conformational states in which the C-terminal helix (CTH) undergoes a closed-to-open dynamics and regulates D14 binding and SL perception. Despite the multiple modes of D3-D14 interactions found in vitro, the residues that regulate the conformational switch of D3/MAX2 CTH in targeting D53/SMXLs and the subsequent effect on SL signalling remain unclear. Here we elucidate the functional dynamics of ASK1-D3/MAX2 in SL signalling by leveraging conformational switch mutants in vitro and in plants. We report the crystal structure of a dislodged CTH of the ASK1-D3 mutant and demonstrate that disruptions in CTH plasticity via either CRISPR-Cas9 genome editing or expression of point mutation mutants result in impairment of SL signalling. We show that the conformational switch in ASK1-D3/MAX2 CTH directly regulates ubiquitin-mediated protein degradation. A dislodged conformation involved in D53/SMXLs SL-dependent recruitment and ubiquitination and an engaged conformation are required for the release of polyubiquitinated D53/SMXLs and subsequently D14 for proteasomal degradation. Finally, we uncovered an organic acid metabolite that can directly trigger the D3/MAX2 CTH conformational switch. Our findings unravel a new regulatory function of a SKP1-CUL1-F-box ubiquitin ligase in plant signalling.
独脚金内酯(SLs)是一类植物激素,调节着众多生长和发育过程。SL 的感知和信号激活涉及到 F-box E3 泛素连接酶 D3/MAX2 和 DWARF14(D14)α/β-水解酶之间的相互作用,这种相互作用依赖于 SL,并靶向 D53/SMXL6/7/8 转录抑制子(SMXLs)进行蛋白酶体介导的降解。已经表明,D3/MAX2 存在于多种构象状态中,其中 C 端螺旋(CTH)经历闭合到开放的动力学变化,并调节 D14 的结合和 SL 的感知。尽管在体外发现了 D3-D14 相互作用的多种模式,但调节 D3/MAX2 CTH 构象转换以靶向 D53/SMXLs 的残基以及对 SL 信号转导的后续影响仍不清楚。在这里,我们通过利用体外和植物中的构象转换突变体,阐明了 ASK1-D3/MAX2 在 SL 信号转导中的功能动力学。我们报告了一个 ASK1-D3 突变体的分离 CTH 的晶体结构,并证明通过 CRISPR-Cas9 基因组编辑或表达点突变突变体破坏 CTH 的可塑性会导致 SL 信号转导受损。我们表明,ASK1-D3/MAX2 CTH 的构象转换直接调节泛素介导的蛋白质降解。一种涉及 D53/SMXLs SL 依赖性招募和泛素化的分离构象,以及一种参与构象,是释放多泛素化的 D53/SMXLs 和随后的 D14 进行蛋白酶体降解所必需的。最后,我们发现了一种可以直接触发 D3/MAX2 CTH 构象转换的有机酸代谢物。我们的研究结果揭示了 SKP1-CUL1-F-box 泛素连接酶在植物信号转导中的一个新的调节功能。