Suppr超能文献

关于多体局域化和杨-巴克斯特系统中量子可积性的观点。

A perspective on quantum integrability in many-body-localized and Yang-Baxter systems.

作者信息

Moore Joel E

机构信息

Department of Physics, University of California, Berkeley, CA 94720, USA

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2017 Dec 13;375(2108). doi: 10.1098/rsta.2016.0429.

Abstract

Two of the most active areas in quantum many-particle dynamics involve systems with an unusually large number of conservation laws. Many-body-localized systems generalize ideas of Anderson localization by disorder to interacting systems. While localization still exists with interactions and inhibits thermalization, the interactions between conserved quantities lead to some dramatic differences from the Anderson case. Quantum integrable models such as the XXZ spin chain or Bose gas with delta-function interactions also have infinite sets of conservation laws, again leading to modifications of conventional thermalization. A practical way to treat the hydrodynamic evolution from local equilibrium to global equilibrium in such models is discussed. This paper expands upon a presentation at a discussion meeting of the Royal Society on 7 February 2017. The work described was carried out with a number of collaborators, including Jens Bardarson, Vir Bulchandani, Roni Ilan, Christoph Karrasch, Siddharth Parameswaran, Frank Pollmann and Romain Vasseur.This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

摘要

量子多粒子动力学中最活跃的两个领域涉及具有异常大量守恒定律的系统。多体局域化系统将由无序导致的安德森局域化概念推广到相互作用系统。虽然局域化在存在相互作用时仍然存在并抑制热化,但守恒量之间的相互作用导致了与安德森情形的一些显著差异。诸如具有δ函数相互作用的XXZ自旋链或玻色气体等量子可积模型也有无限组守恒定律,这同样导致了对传统热化的修正。本文讨论了在这类模型中处理从局部平衡到全局平衡的流体动力学演化的一种实用方法。本文是在2017年2月7日皇家学会的一次讨论会上的报告基础上扩展而成。所描述的工作是与包括延斯·巴尔达森、维尔·布尔钱达尼、罗尼·伊兰、克里斯托夫·卡拉斯克、西达尔特·帕拉梅斯瓦兰、弗兰克·波尔曼和罗曼·瓦瑟尔在内的多位合作者共同完成的。本文是主题为“量子系统中遍历性的崩溃:从固体到合成物质”的特刊的一部分。

相似文献

1
A perspective on quantum integrability in many-body-localized and Yang-Baxter systems.
Philos Trans A Math Phys Eng Sci. 2017 Dec 13;375(2108). doi: 10.1098/rsta.2016.0429.
2
Many-body localization: stability and instability.
Philos Trans A Math Phys Eng Sci. 2017 Dec 13;375(2108). doi: 10.1098/rsta.2016.0422.
3
Algebraic Construction of Current Operators in Integrable Spin Chains.
Phys Rev Lett. 2020 Aug 14;125(7):070602. doi: 10.1103/PhysRevLett.125.070602.
4
Pumping approximately integrable systems.
Nat Commun. 2017 Jun 9;8:15767. doi: 10.1038/ncomms15767.
5
Non-thermalization in trapped atomic ion spin chains.
Philos Trans A Math Phys Eng Sci. 2017 Dec 13;375(2108). doi: 10.1098/rsta.2017.0107.
6
Ergodic and localized regions in quantum spin glasses on the Bethe lattice.
Philos Trans A Math Phys Eng Sci. 2017 Dec 13;375(2108). doi: 10.1098/rsta.2016.0424.
7
Dynamical manifestations of quantum chaos: correlation hole and bulge.
Philos Trans A Math Phys Eng Sci. 2017 Dec 13;375(2108). doi: 10.1098/rsta.2016.0434.
8
Thermal inclusions: how one spin can destroy a many-body localized phase.
Philos Trans A Math Phys Eng Sci. 2017 Dec 13;375(2108). doi: 10.1098/rsta.2016.0428.
9
Absence of localization in interacting spin chains with a discrete symmetry.
Nat Commun. 2023 Jun 24;14(1):3778. doi: 10.1038/s41467-023-39468-4.
10
Statistical mechanics of Floquet quantum matter: exact and emergent conservation laws.
J Phys Condens Matter. 2022 Apr 7;34(23). doi: 10.1088/1361-648X/ac03d2.

引用本文的文献

1
Breakdown of ergodicity in quantum systems: from solids to synthetic matter.
Philos Trans A Math Phys Eng Sci. 2017 Dec 13;375(2108). doi: 10.1098/rsta.2017.0264.

本文引用的文献

1
Solvable Hydrodynamics of Quantum Integrable Systems.
Phys Rev Lett. 2017 Dec 1;119(22):220604. doi: 10.1103/PhysRevLett.119.220604. Epub 2017 Nov 30.
2
Large-Scale Description of Interacting One-Dimensional Bose Gases: Generalized Hydrodynamics Supersedes Conventional Hydrodynamics.
Phys Rev Lett. 2017 Nov 10;119(19):195301. doi: 10.1103/PhysRevLett.119.195301. Epub 2017 Nov 7.
3
Quasi-Many-Body Localization in Translation-Invariant Systems.
Phys Rev Lett. 2016 Dec 9;117(24):240601. doi: 10.1103/PhysRevLett.117.240601. Epub 2016 Dec 7.
4
Transport in Out-of-Equilibrium XXZ Chains: Exact Profiles of Charges and Currents.
Phys Rev Lett. 2016 Nov 11;117(20):207201. doi: 10.1103/PhysRevLett.117.207201. Epub 2016 Nov 8.
5
Diagonalization and Many-Body Localization for a Disordered Quantum Spin Chain.
Phys Rev Lett. 2016 Jul 8;117(2):027201. doi: 10.1103/PhysRevLett.117.027201. Epub 2016 Jul 5.
6
Expansion Potentials for Exact Far-from-Equilibrium Spreading of Particles and Energy.
Phys Rev Lett. 2015 Dec 31;115(26):267201. doi: 10.1103/PhysRevLett.115.267201. Epub 2015 Dec 23.
7
Anomalous diffusion and griffiths effects near the many-body localization transition.
Phys Rev Lett. 2015 Apr 24;114(16):160401. doi: 10.1103/PhysRevLett.114.160401. Epub 2015 Apr 23.
8
Absence of diffusion in an interacting system of spinless fermions on a one-dimensional disordered lattice.
Phys Rev Lett. 2015 Mar 13;114(10):100601. doi: 10.1103/PhysRevLett.114.100601. Epub 2015 Mar 11.
9
Local conservation laws and the structure of the many-body localized states.
Phys Rev Lett. 2013 Sep 20;111(12):127201. doi: 10.1103/PhysRevLett.111.127201. Epub 2013 Sep 17.
10
Universal slow growth of entanglement in interacting strongly disordered systems.
Phys Rev Lett. 2013 Jun 28;110(26):260601. doi: 10.1103/PhysRevLett.110.260601.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验