College of Materials Science and Engineering, Fuzhou. and Fuzhou University, China.
Nanoscale. 2017 Nov 9;9(43):17118-17132. doi: 10.1039/c7nr06697j.
Although recent years have witnessed considerable progress in the synthesis of metal clusters, there is still a paucity of reports on photoelectrochemical (PEC) properties of metal cluster/semiconductor systems for solar energy conversion. In this work, highly ordered glutathione (GSH)-protected gold (Au) cluster (Au@GSH) enwrapped ZnO nanowire array (NW) heterostructures (Au/ZnO NWs) were designed by a facile, green, simple yet efficient in situ etching-induced electrostatic self-assembly strategy by modulating the intrinsic surface charge properties of building blocks, which renders negatively charged Au clusters spontaneously and uniformly self-assembles them on positively charged ZnO NWs framework with intimate interfacial integration. It was unraveled that such Au/ZnO NWs heterostructures demonstrated significantly enhanced PEC water splitting performance in comparison with single ZnO NWs, Au nanoparticles (Au/ZnO NWs) and GSH-capped Ag clusters (Ag/ZnO NWs) decorated ZnO NWs counterparts under both simulated solar and visible light irradiation. The vitally important role of Au clusters as photosensitizer was unambiguously revealed and the merits of Au clusters in boosting charge transfer arising from their unique core-shell architecture were highlighted by systematic comparison under identical conditions, based on which Au cluster-mediated PEC water splitting mechanism is delineated. It is anticipated that our work can highlight the possibility of harnessing metal clusters as efficient light-harvest antennas and open new avenues for rational construction of various highly energy efficient metal cluster/semiconductor heterostructures for widespread photocatalytic and PEC applications.
尽管近年来在金属团簇的合成方面取得了相当大的进展,但对于用于太阳能转换的金属团簇/半导体系统的光电化学(PEC)性能,仍然鲜有报道。在这项工作中,通过一种简便、绿色、简单但高效的原位蚀刻诱导静电自组装策略,设计了高度有序的谷胱甘肽(GSH)保护的金(Au)团簇(Au@GSH)包裹的氧化锌纳米线阵列(NW)异质结构(Au/ZnO NWs),通过调节构建块的固有表面电荷特性,带负电荷的 Au 团簇自发且均匀地自组装到带正电荷的 ZnO NWs 骨架上,具有紧密的界面集成。结果表明,与单个 ZnO NWs、Au 纳米颗粒(Au/ZnO NWs)和 GSH 封端的 Ag 团簇(Ag/ZnO NWs)修饰的 ZnO NWs 相比,这种 Au/ZnO NWs 异质结构在模拟太阳光和可见光照射下,显著提高了 PEC 水分解性能。明确揭示了 Au 团簇作为光致剂的重要作用,并通过在相同条件下进行系统比较,突出了 Au 团簇在增强电荷转移方面的优势,这归因于其独特的核壳结构,基于此,阐述了 Au 团簇介导的 PEC 水分解机制。预计我们的工作可以突出利用金属团簇作为高效光收集天线的可能性,并为合理构建各种用于广泛光催化和 PEC 应用的高效能金属团簇/半导体异质结构开辟新途径。