文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

主动外排与外膜扩散的协同作用决定了抗生素进入革兰氏阴性菌的渗透规则。

Synergy between Active Efflux and Outer Membrane Diffusion Defines Rules of Antibiotic Permeation into Gram-Negative Bacteria.

机构信息

Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA.

Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA

出版信息

mBio. 2017 Oct 31;8(5):e01172-17. doi: 10.1128/mBio.01172-17.


DOI:10.1128/mBio.01172-17
PMID:29089426
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5666154/
Abstract

Gram-negative bacteria are notoriously resistant to antibiotics, but the extent of the resistance varies broadly between species. We report that in significant human pathogens , , and spp., the differences in antibiotic resistance are largely defined by their penetration into the cell. For all tested antibiotics, the intracellular penetration was determined by a synergistic relationship between active efflux and the permeability barrier. We found that the outer membrane (OM) and efflux pumps select compounds on the basis of distinct properties and together universally protect bacteria from structurally diverse antibiotics. On the basis of their interactions with the permeability barriers, antibiotics can be divided into four clusters that occupy defined physicochemical spaces. Our results suggest that rules of intracellular penetration are intrinsic to these clusters. The identified specificities in the permeability barriers should help in the designing of successful therapeutic strategies against antibiotic-resistant pathogens. Multidrug-resistant strains of Gram-negative pathogens rapidly spread in clinics. Significant efforts worldwide are currently directed to finding the rules of permeation of antibiotics across two membrane envelopes of these bacteria. This study created the tools for analysis of and identified the major differences in antibacterial activities that distinguish the permeability barriers of , , , and We conclude that synergy between active efflux and the outer membrane barrier universally protects Gram-negative bacteria from antibiotics. We also found that the diversity of antibiotics affected by active efflux and outer membrane barriers is broader than previously thought and that antibiotics cluster according to specific biological determinants such as the requirement of specific porins in the OM, targeting of the OM, or specific recognition by efflux pumps. No universal rules of antibiotic permeation into Gram-negative bacteria apparently exist. Our results suggest that antibiotic clusters are defined by specific rules of permeation and that further studies could lead to their discovery.

摘要

革兰氏阴性菌对抗生素具有很强的耐药性,但不同物种之间的耐药程度差异很大。我们报告称,在重要的人类病原体 、 、 和 spp. 中,抗生素耐药性的差异在很大程度上取决于它们进入细胞的程度。对于所有测试的抗生素,细胞内渗透是由主动外排和通透性屏障之间的协同关系决定的。我们发现,外膜 (OM) 和外排泵根据不同的特性选择化合物,共同普遍保护细菌免受结构多样的抗生素的侵害。基于它们与通透性屏障的相互作用,抗生素可以分为四个簇,占据不同的物理化学空间。我们的结果表明,细胞内渗透的规则是这些簇的固有特性。通透性屏障的特定性质有助于设计针对抗药性病原体的成功治疗策略。革兰氏阴性病原体的多药耐药菌株在临床上迅速传播。目前,全世界都在努力寻找抗生素穿透这些细菌双层膜的渗透规则。这项研究为分析革兰氏阴性菌的通透性差异创造了工具,并确定了区分 、 、 和 通透性屏障的主要抗菌活性差异。我们得出的结论是,主动外排和外膜屏障之间的协同作用普遍保护革兰氏阴性菌免受抗生素的侵害。我们还发现,受主动外排和外膜屏障影响的抗生素的多样性比以前认为的更广泛,并且抗生素根据特定的生物学决定因素聚类,例如 OM 中特定孔蛋白的需求、OM 的靶向或外排泵的特定识别。显然,革兰氏阴性菌中抗生素渗透没有普遍的规则。我们的研究结果表明,抗生素簇是由特定的渗透规则定义的,进一步的研究可能会发现这些规则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3b5/5666154/f564c6f3bcde/mbo0051735510005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3b5/5666154/1c2e062d327e/mbo0051735510001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3b5/5666154/a90b74b6007f/mbo0051735510002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3b5/5666154/2cd7845d2520/mbo0051735510003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3b5/5666154/3920f774eb48/mbo0051735510004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3b5/5666154/f564c6f3bcde/mbo0051735510005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3b5/5666154/1c2e062d327e/mbo0051735510001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3b5/5666154/a90b74b6007f/mbo0051735510002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3b5/5666154/2cd7845d2520/mbo0051735510003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3b5/5666154/3920f774eb48/mbo0051735510004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3b5/5666154/f564c6f3bcde/mbo0051735510005.jpg

相似文献

[1]
Synergy between Active Efflux and Outer Membrane Diffusion Defines Rules of Antibiotic Permeation into Gram-Negative Bacteria.

mBio. 2017-10-31

[2]
Multidrug Efflux Pumps and the Two-Faced Janus of Substrates and Inhibitors.

Acc Chem Res. 2021-2-16

[3]
Predictive Rules of Efflux Inhibition and Avoidance in Pseudomonas aeruginosa.

mBio. 2021-1-19

[4]
Trans-envelope multidrug efflux pumps of Gram-negative bacteria and their synergism with the outer membrane barrier.

Res Microbiol. 2018

[5]
Functional Diversity of Gram-Negative Permeability Barriers Reflected in Antibacterial Activities and Intracellular Accumulation of Antibiotics.

Antimicrob Agents Chemother. 2023-2-16

[6]
Molecular Properties That Define the Activities of Antibiotics in Escherichia coli and Pseudomonas aeruginosa.

ACS Infect Dis. 2018-8-10

[7]
Substrate Specificities and Efflux Efficiencies of RND Efflux Pumps of Acinetobacter baumannii.

J Bacteriol. 2018-6-11

[8]
The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other gram-negative bacteria. Insights from the Society of Infectious Diseases Pharmacists.

Pharmacotherapy. 2003-7

[9]
The Mla Pathway Plays an Essential Role in the Intrinsic Resistance of Burkholderia cepacia Complex Species to Antimicrobials and Host Innate Components.

J Bacteriol. 2018-8-24

[10]
Efflux Pumps of Burkholderia thailandensis Control the Permeability Barrier of the Outer Membrane.

Antimicrob Agents Chemother. 2019-9-23

引用本文的文献

[1]
Mutations in the proximal binding site and F-loop of AdeJ confer resistance to efflux pump inhibitors.

Antimicrob Agents Chemother. 2025-8-6

[2]
The polyamino-isoprenyl enhancer NV716 enables the antibacterial activity of two families of multi-target inhibitors against the ESKAPEE bacterium .

mLife. 2025-6-25

[3]
No two are alike: on the role of permeability barriers in antibiotic susceptibility and persistence.

Antimicrob Agents Chemother. 2025-8-6

[4]
The power of DNA-encoded chemical libraries in the battle against drug-resistant bacteria.

RSC Adv. 2025-4-30

[5]
Identification of chemical features that influence mycomembrane permeation and antitubercular activity.

bioRxiv. 2025-2-27

[6]
Intracellular Quantification of an Antibiotic Metal Complex in Single Cells of Using Cryo-X-ray Fluorescence Nanoimaging.

ACS Nano. 2025-1-14

[7]
Advances in methods and concepts provide new insight into antibiotic fluxes across the bacterial membrane.

Commun Biol. 2024-11-14

[8]
Integrating bacterial molecular genetics with chemical biology for renewed antibacterial drug discovery.

Biochem J. 2024-7-3

[9]
Non-interchangeable functions of efflux transporters of in survival under infection-associated stress.

J Bacteriol. 2024-7-25

[10]
Inhibitor of Chromosome Segregation in from Fungal Extracts.

ACS Chem Biol. 2024-6-21

本文引用的文献

[1]
Bifurcation kinetics of drug uptake by Gram-negative bacteria.

PLoS One. 2017-9-19

[2]
Modeling the Kinetics of the Permeation of Antibacterial Agents into Growing Bacteria and Its Interplay with Efflux.

Antimicrob Agents Chemother. 2017-9-22

[3]
Predictive compound accumulation rules yield a broad-spectrum antibiotic.

Nature. 2017-5-18

[4]
Whole-Cell-Based Assay To Evaluate Structure Permeation Relationships for Carbapenem Passage through the Pseudomonas aeruginosa Porin OprD.

ACS Infect Dis. 2017-4-14

[5]
Breaking the Permeability Barrier of Escherichia coli by Controlled Hyperporination of the Outer Membrane.

Antimicrob Agents Chemother. 2016-11-21

[6]
The Power of Asymmetry: Architecture and Assembly of the Gram-Negative Outer Membrane Lipid Bilayer.

Annu Rev Microbiol. 2016-6-24

[7]
Distribution and expression of the Ade multidrug efflux systems in Acinetobacter baumannii clinical isolates.

Can J Microbiol. 2016-9

[8]
A Transporter Interactome Is Essential for the Acquisition of Antimicrobial Resistance to Antibiotics.

PLoS One. 2016-4-6

[9]
Permeability Barrier of Gram-Negative Cell Envelopes and Approaches To Bypass It.

ACS Infect Dis. 2015

[10]
Outer Membrane Remodeling: The Structural Dynamics and Electrostatics of Rough Lipopolysaccharide Chemotypes.

J Chem Theory Comput. 2014-6-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索