Suppr超能文献

建立抗菌药物进入生长中细菌的渗透动力学模型及其与外排的相互作用。

Modeling the Kinetics of the Permeation of Antibacterial Agents into Growing Bacteria and Its Interplay with Efflux.

机构信息

Independent Researcher, Cambridge, Massachusetts, USA

出版信息

Antimicrob Agents Chemother. 2017 Sep 22;61(10). doi: 10.1128/AAC.02576-16. Print 2017 Oct.

Abstract

A mathematical model of the passive permeation of a novel solute into bacteria that explicitly accounts for intracellular dilution through growth was developed. A bacterial cell envelope permeability coefficient of approximately >10 cm · s is predicted to ensure passive permeation into rapidly replicating bacterial cells. The relative importance of the permeability coefficients of the cytoplasmic and outer membranes of Gram-negative bacteria in determining the overall envelope permeability coefficient was analyzed quantitatively. A mathematical description of the balance between passive influx and active efflux was also developed and shows that bacterial expansion through growth can usually be neglected for compounds likely to be prepared in antibacterial drug discovery programs and the balance between passive inward permeation and active outwardly directed efflux predominates. A new parameter, efflux efficiency (η, where η is equal to /, in which is the rate coefficient for the efflux pump and is the permeability coefficient for the membrane across which the pump acts), is introduced, and the consequences for the efficiency of efflux pumping by a single pump, two pumps in parallel across either the cytoplasmic or the outer membrane, and two pumps in series, one across the cytoplasmic membrane and one across the outer membrane of Gram-negative bacteria, are explored. The results, showing additive efficiency for two pumps acting across a single membrane and multiplicative efficiency for two pumps acting in series across the cytoplasmic and outer membranes, can be quantitatively related to the ratios between MICs measured against pump-sufficient and pump deletion strains and agree with those of previous experimental and theoretical studies.

摘要

开发了一种数学模型,用于研究新型溶质通过细菌的被动渗透,该模型明确考虑了通过生长导致的细胞内稀释。预测具有约 >10 cm·s 的细菌细胞包膜渗透系数,以确保被动渗透进入快速复制的细菌细胞。分析了革兰氏阴性菌细胞质膜和外膜的渗透系数对确定整个包膜渗透系数的相对重要性。还开发了一种被动内流和主动外排之间平衡的数学描述,并表明对于可能在抗菌药物发现计划中制备的化合物,细菌通过生长的扩张通常可以忽略不计,并且被动向内渗透和主动向外的平衡占主导地位。引入了一个新参数,外排效率(η,其中 η 等于 /,其中 是外排泵的速率系数, 是外排泵作用的膜的渗透系数),并探讨了单个泵、两个泵在细胞质膜或外膜两侧平行作用以及两个泵串联,一个在细胞质膜上,一个在外膜上的外排效率的影响。结果表明,两个泵在单个膜上的作用具有加性效率,而两个泵在细胞质膜和外膜上串联的作用具有乘法效率,这些结果可以定量地与针对泵充足和泵缺失菌株测量的 MICs 比值相关,并与之前的实验和理论研究结果一致。

相似文献

1
Modeling the Kinetics of the Permeation of Antibacterial Agents into Growing Bacteria and Its Interplay with Efflux.
Antimicrob Agents Chemother. 2017 Sep 22;61(10). doi: 10.1128/AAC.02576-16. Print 2017 Oct.
2
Multidrug Efflux Pumps and the Two-Faced Janus of Substrates and Inhibitors.
Acc Chem Res. 2021 Feb 16;54(4):930-939. doi: 10.1021/acs.accounts.0c00843. Epub 2021 Feb 4.
3
Breaking the Permeability Barrier of Escherichia coli by Controlled Hyperporination of the Outer Membrane.
Antimicrob Agents Chemother. 2016 Nov 21;60(12):7372-7381. doi: 10.1128/AAC.01882-16. Print 2016 Dec.
5
A small-molecule inhibitor of BamA impervious to efflux and the outer membrane permeability barrier.
Proc Natl Acad Sci U S A. 2019 Oct 22;116(43):21748-21757. doi: 10.1073/pnas.1912345116. Epub 2019 Oct 7.
6
Understanding efflux in Gram-negative bacteria: opportunities for drug discovery.
Expert Opin Drug Discov. 2012 Jul;7(7):633-42. doi: 10.1517/17460441.2012.688949. Epub 2012 May 19.
8
Drug Permeation against Efflux by Two Transporters.
ACS Infect Dis. 2020 Apr 10;6(4):747-758. doi: 10.1021/acsinfecdis.9b00510. Epub 2020 Feb 25.
9
Analysis of Orthogonal Efflux and Permeation Properties of Compounds Leads to the Discovery of New Efflux Pump Inhibitors.
ACS Infect Dis. 2022 Oct 14;8(10):2149-2160. doi: 10.1021/acsinfecdis.2c00263. Epub 2022 Sep 7.
10
Efflux Impacts Intracellular Accumulation Only in Actively Growing Bacterial Cells.
mBio. 2021 Oct 26;12(5):e0260821. doi: 10.1128/mBio.02608-21. Epub 2021 Oct 12.

引用本文的文献

1
Quantifying bacterial efflux within subcellular domains of .
Appl Environ Microbiol. 2024 Nov 20;90(11):e0144724. doi: 10.1128/aem.01447-24. Epub 2024 Oct 30.
4
The Art of War with : Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy.
Antibiotics (Basel). 2023 Aug 9;12(8):1304. doi: 10.3390/antibiotics12081304.
6
Challenges and shortcomings of antibacterial discovery projects.
Clin Microbiol Infect. 2023 May;29(5):610-615. doi: 10.1016/j.cmi.2022.11.027. Epub 2022 Dec 8.
7
Microscopic Approach to Intrinsic Antibiotic Resistance.
J Phys Chem B. 2021 Apr 1;125(12):3114-3118. doi: 10.1021/acs.jpcb.1c00607. Epub 2021 Mar 23.
8
The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux.
Chem Rev. 2021 May 12;121(9):5597-5631. doi: 10.1021/acs.chemrev.0c01137. Epub 2021 Feb 17.
9
Predictive Rules of Efflux Inhibition and Avoidance in Pseudomonas aeruginosa.
mBio. 2021 Jan 19;12(1):e02785-20. doi: 10.1128/mBio.02785-20.
10
Drug Permeation against Efflux by Two Transporters.
ACS Infect Dis. 2020 Apr 10;6(4):747-758. doi: 10.1021/acsinfecdis.9b00510. Epub 2020 Feb 25.

本文引用的文献

1
Pharmacodynamics of ceftazidime/avibactam against extracellular and intracellular forms of Pseudomonas aeruginosa.
J Antimicrob Chemother. 2017 May 1;72(5):1400-1409. doi: 10.1093/jac/dkw587.
2
Dynamical Model of Drug Accumulation in Bacteria: Sensitivity Analysis and Experimentally Testable Predictions.
PLoS One. 2016 Nov 8;11(11):e0165899. doi: 10.1371/journal.pone.0165899. eCollection 2016.
3
Lipopolysaccharide transport to the cell surface: periplasmic transport and assembly into the outer membrane.
Philos Trans R Soc Lond B Biol Sci. 2015 Oct 5;370(1679). doi: 10.1098/rstb.2015.0027.
4
ESKAPEing the labyrinth of antibacterial discovery.
Nat Rev Drug Discov. 2015 Aug;14(8):529-42. doi: 10.1038/nrd4572. Epub 2015 Jul 3.
5
The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria.
Clin Microbiol Rev. 2015 Apr;28(2):337-418. doi: 10.1128/CMR.00117-14.
7
Antimicrobial Activity of Adenine-Based Inhibitors of NAD(+)-Dependent DNA Ligase.
ACS Med Chem Lett. 2012 Jul 12;3(8):663-7. doi: 10.1021/ml300169x. eCollection 2012 Aug 9.
8
On the essentiality of lipopolysaccharide to Gram-negative bacteria.
Curr Opin Microbiol. 2013 Dec;16(6):779-85. doi: 10.1016/j.mib.2013.09.007. Epub 2013 Oct 19.
9
Protein aggregation in bacteria: the thin boundary between functionality and toxicity.
Microbiology (Reading). 2013 Sep;159(Pt 9):1795-1806. doi: 10.1099/mic.0.069575-0. Epub 2013 Jul 26.
10
Permeation rates of penicillins indicate that Escherichia coli porins function principally as nonspecific channels.
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):E2629-34. doi: 10.1073/pnas.1310333110. Epub 2013 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验