Suppr超能文献

高通量评估干细胞来源红细胞的机械性能,以实现细胞下游处理。

High-throughput assessment of mechanical properties of stem cell derived red blood cells, toward cellular downstream processing.

机构信息

Heriot-Watt University, School of Engineering and Physical Science, Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, Edinburgh, EH14 4AS, Scotland.

MedAnnex Ltd, 1 Summerhall Place, Techcube 3.5, Edinburgh, EH9 1PL, Scotland.

出版信息

Sci Rep. 2017 Oct 31;7(1):14457. doi: 10.1038/s41598-017-14958-w.

Abstract

Stem cell products, including manufactured red blood cells, require efficient sorting and purification methods to remove components potentially harmful for clinical application. However, standard approaches for cellular downstream processing rely on the use of specific and expensive labels (e.g. FACS or MACS). Techniques relying on inherent mechanical and physical properties of cells offer high-throughput scalable alternatives but knowledge of the mechanical phenotype is required. Here, we characterized for the first time deformability and size changes in CD34+ cells, and expelled nuclei, during their differentiation process into red blood cells at days 11, 14, 18 and 21, using Real-Time Deformability Cytometry (RT-DC) and Atomic Force Microscopy (AFM). We found significant differences (p < 0.0001; standardised mixed model) between the deformability of nucleated and enucleated cells, while they remain within the same size range. Expelled nuclei are smaller thus could be removed by size-based separation. An average Young's elastic modulus was measured for nucleated cells, enucleated cells and nuclei (day 14) of 1.04 ± 0.47 kPa, 0.53 ± 0.12 kPa and 7.06 ± 4.07 kPa respectively. Our identification and quantification of significant differences (p < 0.0001; ANOVA) in CD34+ cells mechanical properties throughout the differentiation process could enable development of new routes for purification of manufactured red blood cells.

摘要

干细胞产品,包括制造的红细胞,需要高效的分选和纯化方法来去除可能对临床应用有害的成分。然而,细胞下游处理的标准方法依赖于使用特定的、昂贵的标签(例如 FACS 或 MACS)。依赖于细胞固有机械和物理特性的技术提供了高通量可扩展的替代方法,但需要了解细胞的机械表型。在这里,我们首次使用实时变形细胞术(RT-DC)和原子力显微镜(AFM)在第 11、14、18 和 21 天对 CD34+细胞及其分化为红细胞过程中排出的细胞核的变形性和大小变化进行了表征。我们发现核细胞和去核细胞的变形性有显著差异(p<0.0001;标准化混合模型),而它们的大小仍在同一范围内。排出的细胞核较小,因此可以通过基于大小的分离去除。核细胞、去核细胞和细胞核(第 14 天)的平均杨氏弹性模量分别为 1.04±0.47kPa、0.53±0.12kPa 和 7.06±4.07kPa。我们鉴定并量化了 CD34+细胞在整个分化过程中的机械性能的显著差异(p<0.0001;ANOVA),这可能为制造红细胞的纯化开辟新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5a7/5663858/7185cd9daeb5/41598_2017_14958_Fig1_HTML.jpg

相似文献

3
Mechanical characterization of living and dead undifferentiated human adipose-derived stem cells by using atomic force microscopy.
Proc Inst Mech Eng H. 2013 Dec;227(12):1319-23. doi: 10.1177/0954411913503064. Epub 2013 Sep 17.
4
Alteration of Young's modulus in mesenchymal stromal cells during osteogenesis measured by atomic force microscopy.
Biochem Biophys Res Commun. 2020 Jun 4;526(3):827-832. doi: 10.1016/j.bbrc.2020.03.146. Epub 2020 Apr 6.
6
High-throughput single-cell mechanical phenotyping with real-time deformability cytometry.
Methods Cell Biol. 2018;147:175-198. doi: 10.1016/bs.mcb.2018.06.009. Epub 2018 Jul 29.
8
Measuring Elastic Properties of Single Cancer Cells by AFM.
Methods Mol Biol. 2019;1886:315-324. doi: 10.1007/978-1-4939-8894-5_18.
9
10
Atomic force microscopy imaging and mechanical properties measurement of red blood cells and aggressive cancer cells.
Sci China Life Sci. 2012 Nov;55(11):968-73. doi: 10.1007/s11427-012-4399-3. Epub 2012 Nov 20.

引用本文的文献

1
Deep learning assisted mechanotyping of individual cells through repeated deformations and relaxations in undulating channels.
Biomicrofluidics. 2022 Feb 16;16(1):014104. doi: 10.1063/5.0077432. eCollection 2022 Jan.
2
Biomechanics of circulating cellular and subcellular bioparticles: beyond separation.
Cell Commun Signal. 2024 Jun 17;22(1):331. doi: 10.1186/s12964-024-01707-6.
3
Microparticles with tunable, cell-like properties for quantitative acoustic mechanophenotyping.
Microsyst Nanoeng. 2023 Jul 12;9:90. doi: 10.1038/s41378-023-00556-6. eCollection 2023.
4
Divalent magnesium restores cytoskeletal storage lesions in cold-stored platelet concentrates.
Sci Rep. 2022 Apr 14;12(1):6229. doi: 10.1038/s41598-022-10231-x.
6
Pluripotency of embryonic stem cells lacking clathrin-mediated endocytosis cannot be rescued by restoring cellular stiffness.
J Biol Chem. 2020 Dec 4;295(49):16888-16896. doi: 10.1074/jbc.AC120.014343. Epub 2020 Oct 21.
7
Limitation of spiral microchannels for particle separation in heterogeneous mixtures: Impact of particles' size and deformability.
Biomicrofluidics. 2020 Aug 10;14(4):044113. doi: 10.1063/5.0009673. eCollection 2020 Jul.
8
Effect of elastic modulus on inertial displacement of cell-like particles in microchannels.
Biomicrofluidics. 2020 Aug 3;14(4):044110. doi: 10.1063/5.0017770. eCollection 2020 Jul.
9
Optical Tweezers in Studies of Red Blood Cells.
Cells. 2020 Feb 26;9(3):545. doi: 10.3390/cells9030545.

本文引用的文献

1
High-throughput physical phenotyping of cell differentiation.
Microsyst Nanoeng. 2017 May 8;3:17013. doi: 10.1038/micronano.2017.13. eCollection 2017.
5
Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry.
Integr Biol (Camb). 2016 May 16;8(5):616-23. doi: 10.1039/c5ib00304k. Epub 2016 Mar 16.
6
A scalable label-free approach to separate human pluripotent cells from differentiated derivatives.
Biomicrofluidics. 2016 Jan 14;10(1):014107. doi: 10.1063/1.4939946. eCollection 2016 Jan.
7
Extracting Cell Stiffness from Real-Time Deformability Cytometry: Theory and Experiment.
Biophys J. 2015 Nov 17;109(10):2023-36. doi: 10.1016/j.bpj.2015.09.006.
8
Isolating single cells in a neurosphere assay using inertial microfluidics.
Lab Chip. 2015 Dec 21;15(24):4591-7. doi: 10.1039/c5lc00805k. Epub 2015 Oct 29.
10
Challenges in the translation and commercialization of cell therapies.
BMC Biotechnol. 2015 Aug 7;15:70. doi: 10.1186/s12896-015-0190-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验