Lott Gordon E, Marciniak Michael A, Burke John H
Appl Opt. 2017 Nov 1;56(31):8738-8745. doi: 10.1364/AO.56.008738.
This research images trapped atoms in three dimensions, utilizing light field imaging. Such a system is of interest in the development of atom interferometer accelerometers in dynamic systems where strictly defined focal planes may be impractical. In this research, a light field microscope was constructed utilizing a Lytro Development Kit micro lens array and sensor. It was used to image fluorescing rubidium atoms in a magneto optical trap. The three-dimensional (3D) volume of the atoms is reconstructed using a modeled point spread function (PSF), taking into consideration that the low magnification (1.25) of the system changed typical assumptions used in the optics model for the PSF. The 3D reconstruction is analyzed with respect to a standard off-axis fluorescence image. Optical axis separation between two atom clouds is measured to a 100 μm accuracy in a 3 mm deep volume, with a 16 μm in-focus standard resolution with a 3.9 mm by 3.9 mm field of view. Optical axis spreading is observed in the reconstruction and discussed. The 3D information can be used to determine properties of the atom cloud with a single camera and single image, and can be applied anywhere 3D information is needed but optical access may be limited.
本研究利用光场成像对捕获的原子进行三维成像。这样的系统在动态系统中原子干涉仪加速度计的开发中具有重要意义,因为在动态系统中严格定义焦平面可能不切实际。在本研究中,利用Lytro开发套件微透镜阵列和传感器构建了一台光场显微镜。它被用于对磁光阱中发出荧光的铷原子进行成像。考虑到系统的低放大倍数(1.25)改变了光学模型中用于点扩散函数(PSF)的典型假设,使用建模的点扩散函数对原子的三维(3D)体积进行重建。相对于标准离轴荧光图像对三维重建进行分析。在3毫米深的体积中,测量两个原子云之间的光轴间距,精度达到100微米,在3.9毫米×3.9毫米的视场中,标准聚焦分辨率为16微米。在重建过程中观察到光轴扩展并进行了讨论。三维信息可用于通过单个相机和单幅图像确定原子云的特性,并且可应用于任何需要三维信息但光学接入可能受限的地方。