Department of Medical Imaging, St Michael's Hospital, Toronto, ON, Canada.
Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
J Am Med Inform Assoc. 2018 May 1;25(5):568-571. doi: 10.1093/jamia/ocx125.
Incorrect imaging protocol selection can lead to important clinical findings being missed, contributing to both wasted health care resources and patient harm. We present a machine learning method for analyzing the unstructured text of clinical indications and patient demographics from magnetic resonance imaging (MRI) orders to automatically protocol MRI procedures at the sequence level. We compared 3 machine learning models - support vector machine, gradient boosting machine, and random forest - to a baseline model that predicted the most common protocol for all observations in our test set. The gradient boosting machine model significantly outperformed the baseline and demonstrated the best performance of the 3 models in terms of accuracy (95%), precision (86%), recall (80%), and Hamming loss (0.0487). This demonstrates the feasibility of automating sequence selection by applying machine learning to MRI orders. Automated sequence selection has important safety, quality, and financial implications and may facilitate improvements in the quality and safety of medical imaging service delivery.
不正确的成像协议选择可能导致重要的临床发现被遗漏,这既浪费了医疗保健资源,又对患者造成了伤害。我们提出了一种机器学习方法,用于分析磁共振成像(MRI)检查申请中的临床指征和患者人口统计学的非结构化文本,以便在序列级别自动为 MRI 检查制定协议。我们比较了 3 种机器学习模型——支持向量机、梯度提升机和随机森林,以及一种预测我们测试集中所有观察结果最常见协议的基线模型。梯度提升机模型明显优于基线模型,在准确性(95%)、精度(86%)、召回率(80%)和汉明损失(0.0487)方面,该模型表现出了 3 种模型中最好的性能。这证明了通过将机器学习应用于 MRI 检查申请来实现序列选择自动化的可行性。自动序列选择具有重要的安全性、质量和财务意义,并可能有助于提高医疗成像服务的质量和安全性。