Suppr超能文献

利用机器学习进行神经放射学中的序列级自动 MRI 协议选择。

Using machine learning for sequence-level automated MRI protocol selection in neuroradiology.

机构信息

Department of Medical Imaging, St Michael's Hospital, Toronto, ON, Canada.

Faculty of Medicine, University of Toronto, Toronto, ON, Canada.

出版信息

J Am Med Inform Assoc. 2018 May 1;25(5):568-571. doi: 10.1093/jamia/ocx125.

Abstract

Incorrect imaging protocol selection can lead to important clinical findings being missed, contributing to both wasted health care resources and patient harm. We present a machine learning method for analyzing the unstructured text of clinical indications and patient demographics from magnetic resonance imaging (MRI) orders to automatically protocol MRI procedures at the sequence level. We compared 3 machine learning models - support vector machine, gradient boosting machine, and random forest - to a baseline model that predicted the most common protocol for all observations in our test set. The gradient boosting machine model significantly outperformed the baseline and demonstrated the best performance of the 3 models in terms of accuracy (95%), precision (86%), recall (80%), and Hamming loss (0.0487). This demonstrates the feasibility of automating sequence selection by applying machine learning to MRI orders. Automated sequence selection has important safety, quality, and financial implications and may facilitate improvements in the quality and safety of medical imaging service delivery.

摘要

不正确的成像协议选择可能导致重要的临床发现被遗漏,这既浪费了医疗保健资源,又对患者造成了伤害。我们提出了一种机器学习方法,用于分析磁共振成像(MRI)检查申请中的临床指征和患者人口统计学的非结构化文本,以便在序列级别自动为 MRI 检查制定协议。我们比较了 3 种机器学习模型——支持向量机、梯度提升机和随机森林,以及一种预测我们测试集中所有观察结果最常见协议的基线模型。梯度提升机模型明显优于基线模型,在准确性(95%)、精度(86%)、召回率(80%)和汉明损失(0.0487)方面,该模型表现出了 3 种模型中最好的性能。这证明了通过将机器学习应用于 MRI 检查申请来实现序列选择自动化的可行性。自动序列选择具有重要的安全性、质量和财务意义,并可能有助于提高医疗成像服务的质量和安全性。

相似文献

6
Automatic medical protocol classification using machine learning approaches.使用机器学习方法进行自动医疗协议分类。
Comput Methods Programs Biomed. 2021 Mar;200:105939. doi: 10.1016/j.cmpb.2021.105939. Epub 2021 Jan 16.

引用本文的文献

6
Artificial intelligence for neuro MRI acquisition: a review.神经磁共振成像采集的人工智能:综述。
MAGMA. 2024 Jul;37(3):383-396. doi: 10.1007/s10334-024-01182-7. Epub 2024 Jun 26.
8
Artificial Intelligence (AI) in Nuclear Medicine: Is a Friend Not Foe.核医学中的人工智能:是友非敌。
World J Nucl Med. 2024 Jan 22;23(1):1-2. doi: 10.1055/s-0043-1777698. eCollection 2024 Mar.

本文引用的文献

1
Interpretive Error in Radiology.放射学中的解释性错误。
AJR Am J Roentgenol. 2017 Apr;208(4):739-749. doi: 10.2214/AJR.16.16963. Epub 2016 Dec 27.
3
Radiology Workflow Disruptors: A Detailed Analysis.放射学工作流程干扰因素:详细分析
J Am Coll Radiol. 2016 Oct;13(10):1210-1214. doi: 10.1016/j.jacr.2016.04.009. Epub 2016 Jun 14.
7
Protocol design and optimization.方案设计与优化
J Am Coll Radiol. 2014 May;11(5):440-1. doi: 10.1016/j.jacr.2014.01.021.
9
Effect of clinical decision-support systems: a systematic review.临床决策支持系统的效果:系统评价。
Ann Intern Med. 2012 Jul 3;157(1):29-43. doi: 10.7326/0003-4819-157-1-201207030-00450.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验