Liu Yu, Hu Dejiao, Pang Lin, Gao Fuhua, Zhang Zhiyou, Du Jinglei
Opt Express. 2016 Mar 7;24(5):5243-5252. doi: 10.1364/OE.24.005243.
Tip-enhanced Raman spectroscopy (TERS) is a powerful scanning probe technique for Raman detections in nanotechnology to date. However, limited by the physical principles of a nanosize tapered metal (or metal-coated) probe used in a TERS device, only far-field without near-field Raman signal can be collected by the TERS with the metal probe. This makes conventional TERS lower in efficiency and cannot be a real near-field Raman microscopy. In this paper, we propose a simple and realizable optoplasmonic probe model, which is composed of a dielectric microsphere and a metal nanobowtie, to realize an ideal scanning near-field Raman microscopy (SNRM). Using finite-difference time-domain (FDTD) method, calculation results of electric field distributions of the proposed probe demonstrate that the probe provides three outstanding characteristics, including strong enhancement of local electric field, nanoscale distributions of the produced electric filed, and collection enhancement of emitted energy with wide wavelength range in near field. These characteristics of the probe resolve the detecting restrictions of metal probes and provide a real near-field scanning method. Therefore, a potentially novel SNRM can be expected to extend Raman application range greatly.
尖端增强拉曼光谱(TERS)是迄今为止纳米技术中用于拉曼检测的一种强大的扫描探针技术。然而,受TERS装置中使用的纳米尺寸锥形金属(或金属涂层)探针的物理原理限制,使用金属探针的TERS只能收集到远场拉曼信号,而无法收集近场拉曼信号。这使得传统的TERS效率较低,无法成为真正的近场拉曼显微镜。在本文中,我们提出了一种简单且可实现的光等离子体探针模型,该模型由一个介电微球和一个金属纳米蝴蝶结组成,以实现理想的扫描近场拉曼显微镜(SNRM)。使用时域有限差分(FDTD)方法,所提出探针的电场分布计算结果表明,该探针具有三个突出特性,包括局部电场的强烈增强、所产生电场的纳米级分布以及近场中宽波长范围内发射能量的收集增强。该探针的这些特性解决了金属探针的检测限制,并提供了一种真正的近场扫描方法。因此,有望出现一种潜在的新型SNRM,极大地扩展拉曼应用范围。