Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
Carestream Health, Rochester, NY, 14608, USA.
Med Phys. 2018 Jan;45(1):114-130. doi: 10.1002/mp.12654. Epub 2017 Nov 27.
Quantitative assessment of trabecular bone microarchitecture in extremity cone-beam CT (CBCT) would benefit from the high spatial resolution, low electronic noise, and fast scan time provided by complementary metal-oxide semiconductor (CMOS) x-ray detectors. We investigate the performance of CMOS sensors in extremity CBCT, in particular with respect to potential advantages of thin (<0.7 mm) scintillators offering higher spatial resolution.
A cascaded systems model of a CMOS x-ray detector incorporating the effects of CsI:Tl scintillator thickness was developed. Simulation studies were performed using nominal extremity CBCT acquisition protocols (90 kVp, 0.126 mAs/projection). A range of scintillator thickness (0.35-0.75 mm), pixel size (0.05-0.4 mm), focal spot size (0.05-0.7 mm), magnification (1.1-2.1), and dose (15-40 mGy) was considered. The detectability index was evaluated for both CMOS and a-Si:H flat-panel detector (FPD) configurations for a range of imaging tasks emphasizing spatial frequencies associated with feature size aobj. Experimental validation was performed on a CBCT test bench in the geometry of a compact orthopedic CBCT system (SAD = 43.1 cm, SDD = 56.0 cm, matching that of the Carestream OnSight 3D system). The test-bench studies involved a 0.3 mm focal spot x-ray source and two CMOS detectors (Dalsa Xineos-3030HR, 0.099 mm pixel pitch) - one with the standard CsI:Tl thickness of 0.7 mm (C700) and one with a custom 0.4 mm thick scintillator (C400). Measurements of modulation transfer function (MTF), detective quantum efficiency (DQE), and CBCT scans of a cadaveric knee (15 mGy) were obtained for each detector.
Optimal detectability for high-frequency tasks (feature size of ~0.06 mm, consistent with the size of trabeculae) was ~4× for the C700 CMOS detector compared to the a-Si:H FPD at nominal system geometry of extremity CBCT. This is due to ~5× lower electronic noise of a CMOS sensor, which enables input quantum-limited imaging at smaller pixel size. Optimal pixel size for high-frequency tasks was <0.1 mm for a CMOS, compared to ~0.14 mm for an a-Si:H FPD. For this fine pixel pitch, detectability of fine features could be improved by using a thinner scintillator to reduce light spread blur. A 22% increase in detectability of 0.06 mm features was found for the C400 configuration compared to C700. An improvement in the frequency at 50% modulation (f ) of MTF was measured, increasing from 1.8 lp/mm for C700 to 2.5 lp/mm for C400. The C400 configuration also achieved equivalent or better DQE as C700 for frequencies above ~2 mm . Images of cadaver specimens confirmed improved visualization of trabeculae with the C400 sensor.
The small pixel size of CMOS detectors yields improved performance in high-resolution extremity CBCT compared to a-Si:H FPDs, particularly when coupled with a custom 0.4 mm thick scintillator. The results indicate that adoption of a CMOS detector in extremity CBCT can benefit applications in quantitative imaging of trabecular microstructure in humans.
在肢体锥形束 CT(CBCT)中,使用具有更高空间分辨率、更低电子噪声和更快扫描时间的互补金属氧化物半导体(CMOS)X 射线探测器对小梁骨微结构进行定量评估将带来益处。我们研究了 CMOS 传感器在肢体 CBCT 中的性能,特别是在具有更高空间分辨率的较薄(<0.7mm)闪烁体的潜在优势方面。
我们开发了一种包含 CsI:Tl 闪烁体厚度效应的 CMOS 射线探测器级联系统模型。使用标称的肢体 CBCT 采集协议(90kVp,0.126mAs/projection)进行模拟研究。考虑了一系列闪烁体厚度(0.35-0.75mm)、像素尺寸(0.05-0.4mm)、焦点尺寸(0.05-0.7mm)、放大率(1.1-2.1)和剂量(15-40mGy)。对于强调与特征尺寸 aobj 相关的空间频率的各种成像任务,评估了 CMOS 和 a-Si:H 平板探测器(FPD)配置的检测指数。在与紧凑型骨科 CBCT 系统(SAD=43.1cm,SDD=56.0cm,与 Carestream OnSight 3D 系统匹配)的几何形状相同的 CBCT 测试台上进行了实验验证。测试台研究涉及具有 0.3mm 焦点 X 射线源和两个 CMOS 探测器(Dalsa Xineos-3030HR,0.099mm 像素间距)-一个具有标准 0.7mm CsI:Tl 厚度(C700),一个具有定制 0.4mm 厚闪烁体(C400)。为每个探测器获得了调制传递函数(MTF)、量子探测效率(DQE)和尸体膝关节的 CBCT 扫描测量值(15mGy)。
在肢体 CBCT 的标称系统几何形状下,与小梁骨尺寸一致的高频任务(特征尺寸约为 0.06mm)的最佳检测能力为 C700 CMOS 探测器的4 倍,而与 a-Si:H FPD 相比。这是由于 CMOS 传感器的电子噪声低5 倍,这使其能够在较小的像素尺寸下进行输入量子限制成像。对于高频任务,CMOS 的最佳像素尺寸<0.1mm,而 a-Si:H FPD 的最佳像素尺寸约为 0.14mm。对于这种精细像素间距,可以使用更薄的闪烁体来减少光扩散模糊,从而提高精细特征的检测能力。与 C700 相比,C400 配置的 0.06mm 特征的检测能力提高了 22%。测量到 MTF 的 50%调制(f)频率提高,从 C700 的 1.8lp/mm 增加到 C400 的 2.5lp/mm。C400 配置在高于~2mm 的频率下也达到了与 C700 等效或更好的 DQE。尸体标本的图像证实,C400 传感器可改善小梁骨的可视化。
与 a-Si:H FPD 相比,CMOS 探测器的小像素尺寸可提高高分辨率肢体 CBCT 的性能,特别是当与定制的 0.4mm 厚闪烁体结合使用时。结果表明,在肢体 CBCT 中采用 CMOS 探测器可以受益于人类小梁微观结构定量成像的应用。