Zhou Shaodong, Schlangen Maria, Schwarz Helmut
Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, P.R. China.
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
Chemistry. 2017 Dec 11;23(69):17469-17472. doi: 10.1002/chem.201704892. Epub 2017 Nov 23.
The thermal gas-phase reactions of [ReO ] with methane have been explored by using Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry complemented by high-level quantum chemical calculations. Upon reacting with methane, this cluster oxide, having an even-number of valence electrons, brings about both hydrogen-atom abstraction (HAT) to generate [ReO H] and the formation of formaldehyde. Mechanistically, HAT occurs on the ground-state triplet surface, while for the generation of formaldehyde a two-state reactivity scenario prevails. The branching ratio of these competing processes is affected by the rather inefficient spin-orbit coupling to bring about the required triplet-singlet intersystem crossing.
利用傅里叶变换离子回旋共振(FT-ICR)质谱并辅以高水平量子化学计算,对[ReO]与甲烷的热气相反应进行了研究。与甲烷反应时,这种具有偶数价电子的簇状氧化物既会发生氢原子夺取(HAT)反应生成[ReO H],又会生成甲醛。从机理上讲,氢原子夺取反应发生在基态三重态表面,而甲醛的生成则存在双态反应情况。这些竞争过程的分支比受相当低效的自旋-轨道耦合影响,以实现所需的三重态-单重态系间窜越。