Suppr超能文献

结构可塑性介导 Rab33 和 Rab5 中不同的 GAP 依赖性 GTP 水解机制。

Structural plasticity mediates distinct GAP-dependent GTP hydrolysis mechanisms in Rab33 and Rab5.

机构信息

Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India.

Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, India.

出版信息

FEBS J. 2017 Dec;284(24):4358-4375. doi: 10.1111/febs.14314. Epub 2017 Nov 23.

Abstract

The classical GTP hydrolysis mechanism, as seen in Ras, employs a catalytic glutamine provided in cis by the GTPase and an arginine supplied in trans by a GTPase activating protein (GAP). The key idea emergent from a large body of research on small GTPases is that GTPases employ a variety of different hydrolysis mechanisms; evidently, these variations permit diverse rates of GTPase inactivation, crucial for temporal regulation of different biological processes. Recently, we unified these variations and argued that a steric clash between active site residues (corresponding to positions 12 and 61 of Ras) governs whether a GTPase utilizes the cis-Gln or the trans-Gln (from the GAP) for catalysis. As the cis-Gln encounters a steric clash, the Rab GTPases employ the so-called dual finger mechanism where the interacting GAP supplies a trans-Gln for catalysis. Using experimental and computational methods, we demonstrate how the cis-Gln of Rab33 overcomes the steric clash when it is stabilized by a residue in the vicinity. In effect, this demonstrates how both cis-Gln- and trans-Gln-mediated mechanisms could operate in the same GTPase in different contexts, i.e. depending on the GAP that regulates its action. Interestingly, in the case of Rab5, which possesses a higher intrinsic GTP hydrolysis rate, a similar stabilization of the cis-Gln appears to overcome the steric clash. Taken together with the mechanisms seen for Rab1, it is evident that the observed variations in Rab and their GAP partners allow structural plasticity, or in other words, the choice of different catalytic mechanisms.

摘要

经典的 GTP 水解机制,如 Ras 中所见,采用由 GTPase 顺式提供的催化谷氨酰胺和由 GTP 酶激活蛋白 (GAP) 反式提供的精氨酸。从大量关于小 GTP 酶的研究中得出的一个关键思想是,GTP 酶采用多种不同的水解机制;显然,这些变化允许不同的 GTP 酶失活速率,这对于不同生物过程的时间调节至关重要。最近,我们统一了这些变化,并认为活性位点残基(对应 Ras 的位置 12 和 61)之间的空间冲突决定了 GTP 酶是否利用顺式-Gln 或反式-Gln(来自 GAP)进行催化。当顺式-Gln 遇到空间冲突时,Rab GTP 酶采用所谓的双指机制,其中相互作用的 GAP 提供反式-Gln 进行催化。使用实验和计算方法,我们证明了当 Rab33 的顺式-Gln 被附近的残基稳定时,它如何克服空间冲突。实际上,这证明了在不同的上下文(即取决于调节其作用的 GAP)中,顺式-Gln-和反式-Gln 介导的机制都可以在同一 GTP 酶中起作用。有趣的是,在具有更高内在 GTP 水解速率的 Rab5 的情况下,顺式-Gln 的类似稳定似乎克服了空间冲突。与 Rab1 所见的机制结合在一起,显然观察到的 Rab 及其 GAP 伙伴的变化允许结构可塑性,换句话说,选择不同的催化机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验