Suppr超能文献

二氧化钛纳米颗粒的共暴露不会影响萝卜种子(Raphanus sativus)中的镉毒性。

Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus).

机构信息

Department of Physical, Earth and Environment Science-DSFTA, University of Siena, Italy.

Department of Physical, Earth and Environment Science-DSFTA, University of Siena, Italy.

出版信息

Ecotoxicol Environ Saf. 2018 Feb;148:359-366. doi: 10.1016/j.ecoenv.2017.10.051. Epub 2017 Nov 6.

Abstract

Recent developments on environmental fate models indicate that as nano waste, engineered nanomaterials (ENMs) could reach terrestrial ecosystems thus potentially affecting environmental and human health. Plants can be therefore exposed to ENMs but controversial data in terms of fate and toxicity are currently available. Furthermore, there is a current lack of information on complex interactions/transformations to which ENMs undergo in the natural environment as for instance interacting with existing toxic compounds. The aim of the present study was to assess the behavior and biological effects of titanium dioxide nanoparticles (n-TiO) (Aeroxide P25, Degussa Evonik) and its interaction with cadmium (CdCl) in plants using radish seeds (Raphanus sativus L. Parvus) as model species. Radish seeds were exposed to n-TiO (1-1000mg/L) and CdCl (1-250mg/L) alone and in combination using a seed germination and seedling growth toxicity test OECD 208. Percentage of seed germination, germination index (GI) and root elongation were calculated. Cell morphology and oxidative stress parameters as glutathione-S-transferase (GST) and catalase activities (CAT) were measured in radish seeds after 5 days of exposure. Z-Average, PdI and Z-potential of n-TiO in Milli-Q water as exposure medium were also determined. DLS analysis showed small aggregates of n-TiO, negative Z-potential and stable PdI in seed's exposure media. Germination percentage, GI and root length resulted affected by n-TiO exposure compared to controls. In particular, n-TiO at 1mg/L and 100mg/L did not affect radish seeds germination (100%) while at concentration of 10mg/L, 200mg/L, 500mg/L, and 1000mg/L a slight but not significant decrease of germination % was observed. Similarly root length and GI resulted significantly higher in seeds exposed to 10mg/L and 200mg/L compared to 1mg/L, 100mg/L, 500mg/L, 1000mg/L and control (p < 0.05). On the opposite, CdCl significantly abolished germination % and GI compared to control seeds and a concentration dependent decrease on root elongation was observed against controls (p < 0.05). As well, significant decrease of germination %, GI and root elongation was observed in seeds co-exposed to n-TiO and CdCl at the highest concentrations (1000mg/L n-TiO and 250mg/L CdCl) compared to co-exposed seeds at low concentration (1mg/L n-TiO and 1mg/L CdCl) and controls (p < 0.05). Root elongation significantly increase compared to control at the lowest co-exposure concentration (p < 0.05). Similarly at intermediate concentrations of 10 and 100mg/L in co-exposure conditions, n-TiO did not affect CdCl toxicity. Concerning antioxidant enzymes, a significant increase of CAT activity in seeds exposed to single high n-TiO concentration (1000mg/L) was observed while n-TiO (1mg/L), CdCl (1 and 250mg/L) and co-exposure resulted significantly decreased compared to controls (p < 0.05). Regarding GST activity, a slight increase in seeds exposed to 1000mg/L n-TiO but no significantly was observed, however both n-TiO and CdCl alone (1 and 250mg/L, respectively) or in combinations caused a significant decrease in GST activity (p < 0.05). Therefore, overall data support the hypothesis that the presence of n-TiO do not affect the toxicity of CdCl at least at the highest concentration (100 and 250mg/L) in radish seeds. Morphological alterations in nuclei, vacuoles and shape of radish root cells were observed upon single Cd exposure and not abolished in the presence of n-TiO. Nevertheless, although n-TiO seems not to reduce Cd toxicity at high concentration (up to 250mg/L), interactions cannot be excluded based on obtained results.

摘要

最近的环境 fate 模型研究表明,作为纳米废物的工程纳米材料(ENMs)可能会进入陆地生态系统,从而可能对环境和人类健康造成影响。因此,植物可能会接触到 ENMs,但目前关于其命运和毒性的数据存在争议。此外,目前缺乏关于 ENMs 在自然环境中经历的复杂相互作用/转化的信息,例如与现有有毒化合物的相互作用。本研究旨在使用萝卜种子(Raphanus sativus L. Parvus)作为模型物种,评估二氧化钛纳米颗粒(n-TiO)(Aeroxide P25,Degussa Evonik)的行为和生物学效应及其与镉(CdCl)的相互作用。萝卜种子暴露于 n-TiO(1-1000mg/L)和 CdCl(1-250mg/L)单独和组合使用 OECD 208 种子发芽和幼苗生长毒性试验。计算种子发芽率、发芽指数(GI)和根伸长率。暴露 5 天后,测量萝卜种子的细胞形态和氧化应激参数,如谷胱甘肽-S-转移酶(GST)和过氧化氢酶(CAT)活性。还确定了 n-TiO 在 Milli-Q 水中的 Z-平均、PdI 和 Z-电位作为暴露介质。DLS 分析表明,n-TiO 在种子暴露介质中形成小的聚集体,具有负的 Z-电位和稳定的 PdI。与对照相比,n-TiO 暴露导致种子发芽率、GI 和根长受到影响。特别是,n-TiO 在 1mg/L 和 100mg/L 浓度下不影响萝卜种子的发芽(100%),而在 10mg/L、200mg/L、500mg/L 和 1000mg/L 浓度下,观察到发芽%略有但不显著下降。同样,暴露于 10mg/L 和 200mg/L 的种子的根长和 GI 显著高于 1mg/L、100mg/L、500mg/L、1000mg/L 和对照(p < 0.05)。相反,CdCl 与对照种子相比,显著降低了发芽率和 GI,并且观察到根伸长与对照相比呈浓度依赖性下降(p < 0.05)。同样,在最高浓度(1000mg/L n-TiO 和 250mg/L CdCl)下,n-TiO 和 CdCl 共暴露的种子与低浓度(1mg/L n-TiO 和 1mg/L CdCl)和对照相比,观察到发芽率、GI 和根伸长显著降低(p < 0.05)。与对照相比,在最低共暴露浓度下,根伸长显著增加(p < 0.05)。同样,在共暴露条件下,10 和 100mg/L 浓度的中间浓度下,n-TiO 对 CdCl 的毒性没有影响。关于抗氧化酶,在单独暴露于高浓度 n-TiO(1000mg/L)的种子中观察到 CAT 活性显著增加,而 n-TiO(1mg/L)、CdCl(1 和 250mg/L)和共暴露与对照相比显著降低(p < 0.05)。关于 GST 活性,在暴露于 1000mg/L n-TiO 的种子中观察到轻微增加,但无显著变化,但 n-TiO 和 CdCl 单独(1 和 250mg/L,分别)或组合使用会导致 GST 活性显著降低(p < 0.05)。因此,总体数据支持这样的假设,即在萝卜种子中,n-TiO 的存在至少在最高浓度(100 和 250mg/L)下不会影响 CdCl 的毒性。单独暴露于 Cd 会导致萝卜根细胞的细胞核、液泡和形状发生形态改变,而在存在 n-TiO 的情况下则不会消除这些改变。然而,尽管 n-TiO 似乎不会在高浓度(高达 250mg/L)下降低 Cd 的毒性,但不能排除基于获得的结果的相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验