Suppr超能文献

计算机模拟优化临床试验中肝安全性生物标志物的解读。

In silico modeling to optimize interpretation of liver safety biomarkers in clinical trials.

机构信息

1 UNC Institute for Drug Safety Sciences, 2331 Research Triangle Park , NC 27709, USA.

2 Division of Pharmacotherapy and Experimental Therapeutics, 15521 UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill , NC 27599, USA.

出版信息

Exp Biol Med (Maywood). 2018 Feb;243(3):300-307. doi: 10.1177/1535370217740853. Epub 2017 Nov 2.

Abstract

Current strategies to delineate the risk of serious drug-induced liver injury associated with drugs rely on assessment of serum biomarkers that have been utilized for many decades. In particular, serum alanine aminotransferase and total bilirubin levels are typically used to assess hepatic integrity and function, respectively. Parallel measurement of these biomarkers is utilized to identify patients with drug-induced hepatocellular jaundice ("Hy's Law" cases) which carries at least a 10% risk of death or liver transplant. However, current guidelines regarding use of these biomarkers in clinical trials can put study subjects at risk for life-threatening drug-induced liver injury, or result in over estimation of risk that may halt development of safe drugs. In addition, pharmaceutical companies are increasingly being required to conduct large and expensive clinical trials to "defend" the safety of their new drug when results from smaller trials are inconclusive. Innovative approaches and some novel biomarkers are now being employed to maximize the value of traditional biochemical tests. DILIsym®, a product of the DILIsim Initiative, utilizes serial serum alanine aminotransferase values, along with serum biomarkers of apoptosis vs necrosis, to estimate percent hepatocyte loss and total bilirubin elevations resulting from loss of global liver function. The results from analyses conducted with DILIsym have been reported to the FDA to support the safety of entolimod and cimaglermin alfa after elevations in serum alanine aminotransferase and/or bilirubin halted clinical development. DILIsym can also be utilized to determine whether rises in serum conjugated and unconjugated bilirubin are consistent with mechanisms unrelated to toxicity ( i.e. inhibition of bilirubin transport or metabolism). In silico modeling of traditional and novel drug-induced liver injury biomarker data obtained in clinical trials may be the most efficient and accurate way to define the liver safety profile of new drug candidates. Impact statement Blood tests used in clinical trials to detect and monitor drug-induced liver injury (DILI) have not changed in half a century. These tests have several shortcomings: their use has not completely prevented clinical trial participants from risk of life-threatening DILI, they can give false positive results that halt the development of safe drug candidates, and they can create liver safety "concerns" that require large additional clinical trials to accurately define DILI risk. This review highlights the use of in silico modeling to improve interpretation of the blood tests currently available to detect DILI risk in new drug candidates. This approach is increasingly being applied in clinical trials to more precisely assess the degree of hepatocellular injury and its functional impact. This new approach holds the promise of more accurately defining DILI risk in smaller clinical trials.

摘要

目前用于划定与药物相关的严重药物性肝损伤风险的策略依赖于对血清生物标志物的评估,这些标志物已经使用了几十年。特别是,血清丙氨酸氨基转移酶和总胆红素水平通常分别用于评估肝完整性和功能。平行测量这些生物标志物用于识别药物性肝细胞性黄疸(“Hy's 法则”病例)患者,其具有至少 10%的死亡或肝移植风险。然而,目前关于临床试验中使用这些生物标志物的指南可能使研究对象面临危及生命的药物性肝损伤的风险,或者导致对可能阻止安全药物开发的风险的过高估计。此外,制药公司越来越需要进行大型和昂贵的临床试验,以“捍卫”其新药的安全性,而较小试验的结果不确定。现在正在采用创新方法和一些新型生物标志物来最大限度地提高传统生化测试的价值。DILIsym®是 DILIsim 计划的产物,它利用连续的血清丙氨酸氨基转移酶值以及凋亡与坏死的血清生物标志物,来估计由于整体肝功能丧失导致的肝细胞损失百分比和总胆红素升高。用 DILIsym 进行的分析结果已报告给 FDA,以支持恩替莫德和西马鲁肽在血清丙氨酸氨基转移酶和/或胆红素升高后停止临床开发的安全性。DILIsym 还可用于确定血清结合和非结合胆红素的升高是否与无关毒性的机制一致(即胆红素转运或代谢的抑制)。临床试验中获得的传统和新型药物性肝损伤生物标志物数据的计算机模拟可能是定义新药候选物肝脏安全性概况的最有效和准确的方法。影响说明在临床试验中用于检测和监测药物性肝损伤(DILI)的血液检测方法在半个世纪内没有改变。这些测试有几个缺点:它们的使用并未完全防止临床试验参与者面临危及生命的 DILI 风险,它们可能会产生假阳性结果,从而阻止安全候选药物的开发,并且它们可能会造成肝脏安全性“担忧”,需要进行大量额外的临床试验才能准确定义 DILI 风险。本综述强调了使用计算机模拟来改善对当前用于检测新药候选物 DILI 风险的血液检测的解释。这种方法越来越多地应用于临床试验中,以更精确地评估肝细胞损伤的程度及其功能影响。这种新方法有望在较小的临床试验中更准确地定义 DILI 风险。

相似文献

7
DILI and drug development: a regulatory perspective.药物性肝损伤与药物研发:监管视角
Semin Liver Dis. 2014 May;34(2):215-26. doi: 10.1055/s-0034-1375961. Epub 2014 May 31.
8
Drug-Induced Liver Injury Is a Major Risk for New Drugs.药物性肝损伤是新药的主要风险。
Dig Dis. 2015;33(4):458-63. doi: 10.1159/000374089. Epub 2015 Jul 6.

引用本文的文献

6
Tools for causality assessment in drug-induced liver disease.药物性肝损伤因果关系评估工具。
Curr Opin Gastroenterol. 2019 May;35(3):183-190. doi: 10.1097/MOG.0000000000000526.

本文引用的文献

4
Solithromycin rejection chills antibiotic sector.索利霉素遭拒使抗生素行业受挫。
Nat Biotechnol. 2017 Mar 7;35(3):187-188. doi: 10.1038/nbt0317-187.
8
Methodology to assess clinical liver safety data.评估临床肝脏安全性数据的方法学。
Drug Saf. 2014 Nov;37 Suppl 1(Suppl 1):S33-45. doi: 10.1007/s40264-014-0184-5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验