Suppr超能文献

星形胶质细胞中线粒体动态的调节:机制、后果和未知因素。

Regulation of mitochondrial dynamics in astrocytes: Mechanisms, consequences, and unknowns.

机构信息

Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, 19104.

Departments of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104.

出版信息

Glia. 2018 Jun;66(6):1213-1234. doi: 10.1002/glia.23252. Epub 2017 Nov 3.

Abstract

Astrocytes are the major glial cell in the central nervous system. These polarized cells possess numerous processes that ensheath the vasculature and contact synapses. Astrocytes play important roles in synaptic signaling, neurotransmitter synthesis and recycling, control of nutrient uptake, and control of local blood flow. Many of these processes depend on local metabolism and/or energy utilization. While astrocytes respond to increases in neuronal activity and metabolic demand by upregulating glycolysis and glycogenolysis, astrocytes also possess significant capacity for oxidative (mitochondrial) metabolism. Mitochondria mediate energy supply and metabolism, cellular survival, ionic homeostasis, and proliferation. These organelles are dynamic structures undergoing extensive fission and fusion, directed movement along cytoskeletal tracts, and degradation. While many of the mechanisms underlying the dynamics of these organelles and their physiologic roles have been characterized in neurons and other cells, the roles that mitochondrial dynamics play in glial physiology is less well understood. Recent work from several laboratories has demonstrated that mitochondria are present within the fine processes of astrocytes, that their movement is regulated, and that they contribute to local Ca signaling within the astrocyte. They likely play a role in local ATP production and metabolism, particularly that of glutamate. Here we will review these and other findings describing the mechanism by which mitochondrial dynamics are regulated in astrocytes, how mitochondrial dynamics might influence astrocyte and brain metabolism, and draw parallels to mitochondrial dynamics in neurons. Additionally, we present new analyses of the size, distribution, and dynamics of mitochondria in astrocytes performed using in vivo using 2-photon microscopy.

摘要

星形胶质细胞是中枢神经系统中的主要神经胶质细胞。这些极化细胞拥有许多突起,包裹着血管并与突触接触。星形胶质细胞在突触信号传递、神经递质合成和再循环、营养物质摄取的控制以及局部血流的控制中发挥着重要作用。许多这些过程依赖于局部代谢和/或能量利用。星形胶质细胞通过上调糖酵解和糖原分解来响应神经元活动和代谢需求的增加,但也具有显著的氧化(线粒体)代谢能力。线粒体介导能量供应和代谢、细胞存活、离子稳态和增殖。这些细胞器是动态结构,经历广泛的分裂和融合、沿着细胞骨架轨迹的定向运动以及降解。虽然这些细胞器的动力学及其生理作用的许多机制已经在神经元和其他细胞中得到了描述,但线粒体动力学在神经胶质生理学中的作用还不太清楚。最近来自几个实验室的工作表明,线粒体存在于星形胶质细胞的细突起中,其运动受到调节,并且它们有助于星形胶质细胞内的局部 Ca 信号转导。它们可能在局部 ATP 产生和代谢中发挥作用,特别是谷氨酸的代谢。在这里,我们将回顾这些和其他描述星形胶质细胞中线粒体动力学调节机制的发现,探讨线粒体动力学如何影响星形胶质细胞和大脑代谢,并与神经元中线粒体动力学进行类比。此外,我们还展示了使用双光子显微镜在体内进行的星形胶质细胞中线粒体大小、分布和动力学的新分析。

相似文献

8
Mitochondrial dynamics in astrocytes.星形胶质细胞中的线粒体动力学
Biochem Soc Trans. 2014 Oct;42(5):1302-10. doi: 10.1042/BST20140195.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验