Suppr超能文献

过度的内质网应激和由此导致的自噬流功能障碍导致氟化物诱导的神经毒性。

Excessive ER stress and the resulting autophagic flux dysfunction contribute to fluoride-induced neurotoxicity.

机构信息

Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.

Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.

出版信息

Environ Pollut. 2018 Feb;233:889-899. doi: 10.1016/j.envpol.2017.09.015. Epub 2017 Oct 31.

Abstract

Fluoride is capable of inducing neurotoxicity, but its mechanisms remain elusive. This study aimed to explore the roles of endoplasmic reticulum (ER) stress and autophagy in sodium fluoride (NaF)-induced neurotoxicity, focusing on the regulating role of ER stress in autophagy. The in vivo results demonstrated that NaF exposure impaired the learning and memory capabilities of rats, and resulted in histological and ultrastructural abnormalities in rat hippocampus. Moreover, NaF exposure induced excessive ER stress and associated apoptosis, as manifested by elevated IRE1α, GRP78, cleaved caspase-12 and cleaved-caspase-3, as well as defective autophagy, as shown by increased Beclin1, LC3-II and p62 expression in hippocampus. Consistently, the in vitro results further verified the findings of in vivo study that NaF induced excessive ER stress and defective autophagy in SH-SY5Y cells. Notably, inhibition of autophagy in NaF-treated SH-SY5Y cells with Wortmannin or Chloroquine decreased, while induction of autophagy by Rapamycin increased the cell viability. These results were correlated well with the immunofluorescence observations, thus confirming the pivotal role of autophagic flux dysfunction in NaF-induced cell death. Importantly, mitigation of ER stress by 4-phenylbutyrate in NaF-treated SH-SY5Y cells inhibited the expressions of autophagy markers, and decreased cell apoptosis. Taken together, these data suggest that neuronal death resulted from excessive ER stress and autophagic flux dysfunction contributes to fluoride-elicited neurotoxicity. Moreover, the autophagic flux dysfunction was mediated by excessive ER stress, which provided novel insight into a better understanding of fluoride-induced neurotoxicity.

摘要

氟化物具有诱导神经毒性的能力,但其机制仍难以捉摸。本研究旨在探讨内质网(ER)应激和自噬在氟化钠(NaF)诱导的神经毒性中的作用,重点研究 ER 应激对自噬的调节作用。体内研究结果表明,NaF 暴露损害了大鼠的学习和记忆能力,并导致大鼠海马组织学和超微结构异常。此外,NaF 暴露诱导过度的 ER 应激和相关的细胞凋亡,表现为 IRE1α、GRP78、cleaved caspase-12 和 cleaved-caspase-3 的升高,以及自噬的缺陷,表现为 Beclin1、LC3-II 和 p62 在海马中的表达增加。一致地,体外研究结果进一步验证了体内研究的发现,即 NaF 在 SH-SY5Y 细胞中诱导过度的 ER 应激和自噬缺陷。值得注意的是,用 Wortmannin 或 Chloroquine 抑制 NaF 处理的 SH-SY5Y 细胞中的自噬会降低细胞活力,而用 Rapamycin 诱导自噬会增加细胞活力。这些结果与免疫荧光观察结果密切相关,从而证实了自噬通量功能障碍在 NaF 诱导的细胞死亡中的关键作用。重要的是,用 4-苯丁酸减轻 NaF 处理的 SH-SY5Y 细胞中的 ER 应激抑制了自噬标志物的表达,并减少了细胞凋亡。综上所述,这些数据表明,神经元死亡是由于过度的 ER 应激和自噬通量功能障碍导致的,这可能是氟化物引起神经毒性的原因之一。此外,自噬通量功能障碍是由过度的 ER 应激介导的,这为更好地理解氟化物诱导的神经毒性提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验