Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna "Alma Mater Studiorum" Piazza di Porta San Donato 1, 40126 Bologna, Italy; Centro di Ricerche Interdisciplinari di Biomineralogia, Cristallografia e Biomateriali, Università di Bologna "Alma Mater Studiorum" Piazza di Porta San Donato 1, 40126 Bologna, Italy.
Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna "Alma Mater Studiorum" Piazza di Porta San Donato 1, 40126 Bologna, Italy; Centro di Ricerche Interdisciplinari di Biomineralogia, Cristallografia e Biomateriali, Università di Bologna "Alma Mater Studiorum" Piazza di Porta San Donato 1, 40126 Bologna, Italy.
J Mech Behav Biomed Mater. 2018 Jan;77:683-692. doi: 10.1016/j.jmbbm.2017.10.029. Epub 2017 Oct 25.
The calcium apatite minerals are among the most studied in the biomaterial field because of their similarity with the mineral phase of bone tissues, which is mainly the hexagonal polymorph of hydroxylapatite. Given the growing interest both in the microscopic processes governing the behaviour of these natural biomaterials and in recent experimental methods to investigate the Raman response of hydroxylapatite upon mechanical loading, we report in the present work a detailed quantum mechanical analysis by DFT/B3LYP-D* approach on the Raman and infrared responses of hydroxylapatite upon deformation of its unit cell. From the vibrational results, the piezo-spectroscopic components Δν = Πσ were calculated. For the first time to the authors' knowledge quantum mechanics (QM) was applied to resolve the piezo-spectroscopic response of hydroxylapatite. The QM results on the uniaxial stress responses of this phase on the piezo-spectroscopic components Π and Π of the symmetric P-O stretching mode were 2.54 ± 0.09cm/GPa and 2.56 ± 0.06cm/GPa, respectively (Raman simulation) and 2.48 ± 0.15cm/GPa and Π = 2.74 ± 0.08cm/GPa, respectively, of the asymmetric P-O stretching (infrared spectroscopy simulation). These results are in excellent agreement with previous experimental data reported in literature. The quantum mechanical analysis of the other vibrational bands (not present in literature) shed more light on this new and very important application of both Raman and IR spectroscopies and extend the knowledge of the behaviour of hydroxylapatite, suggesting and addressing further experimental research and analytic strategy.
钙磷灰石矿物质是生物材料领域中研究最多的矿物质之一,因为它们与骨骼组织的矿物质相非常相似,骨骼组织的矿物质相主要是羟基磷灰石的六方晶型。鉴于人们对控制这些天然生物材料行为的微观过程以及最近研究羟基磷灰石在机械加载下的喇曼响应的实验方法越来越感兴趣,我们在目前的工作中通过 DFT/B3LYP-D* 方法对羟基磷灰石在其单元胞变形时的喇曼和红外响应进行了详细的量子力学分析。从振动结果中,计算出了压电光谱分量Δν=Πσ。据作者所知,这是第一次将量子力学(QM)应用于解决羟基磷灰石的压电光谱响应。QM 对该相在对称 P-O 伸缩模式的压电光谱分量 Π 和 Π 上的单轴应力响应的结果分别为 2.54±0.09cm/GPa 和 2.56±0.06cm/GPa(喇曼模拟)和 2.48±0.15cm/GPa 和 Π=2.74±0.08cm/GPa,分别为非对称 P-O 伸缩(红外光谱模拟)。这些结果与文献中报道的以前的实验数据非常吻合。对其他振动带(文献中未报道)的量子力学分析进一步阐明了喇曼和红外光谱的这一新的和非常重要的应用,并扩展了对羟基磷灰石行为的认识,为进一步的实验研究和分析策略提出了建议。