Centro di Ricerca Interdisciplinare di Biomineralogia, Cristallografia e Biomateriali, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna Alma Mater Studiorum, P. Porta San Donato 1, 40126 Bologna, Italy.
Biomolecules. 2021 May 13;11(5):728. doi: 10.3390/biom11050728.
Hard tissues (e.g., bone, enamel, dentin) in vertebrates perform various and different functions, from sustaining the body to haematopoiesis. Such complex and hierarchal tissue is actually a material composite whose static and dynamic properties are controlled by the subtle physical and chemical interplay between its components, collagen (main organic part) and hydroxylapatite-like mineral. The knowledge needed to fully understand the properties of bony and dental tissues and to develop specific applicative biomaterials (e.g., fillers, prosthetics, scaffolds, implants, etc.) resides mostly at the atomic scale. Among the different methods to obtains such detailed information, atomistic computer simulations (in silico) have proven to be both corroborative and predictive tools in this subject. The authors have intensively worked on quantum mechanical simulations of bioapatite and the present work reports a detailed review addressed to the crystal-chemical, physical, spectroscopic, mechanical, and surface properties of the mineral phase of bone and dental tissues. The reviewed studies were conducted at different length and time scales, trying to understand the features of hydroxylapatite and biological apatite models alone and/or in interaction with simplified collagen-like models. The reported review shows the capability of the computational approach in dealing with complex biological physicochemical systems, providing accurate results that increase the overall knowledge of hard tissue science.
硬组织(如骨骼、牙釉质、牙本质)在脊椎动物中执行着各种不同的功能,从支撑身体到造血。这种复杂的层次组织实际上是一种材料复合材料,其静态和动态特性由其组成部分(主要有机部分是胶原蛋白)和羟基磷灰石样矿物质之间的微妙物理和化学相互作用控制。要全面了解骨骼和牙齿组织的特性并开发特定的应用生物材料(如填充物、假体、支架、植入物等),需要的知识主要在原子尺度上。在获得这些详细信息的不同方法中,原子尺度计算机模拟(计算机模拟)已被证明是该领域的佐证和预测工具。作者在生物磷灰石的量子力学模拟方面进行了深入研究,目前的工作报告详细回顾了骨骼和牙齿组织矿物相的晶体化学、物理、光谱、力学和表面特性。所回顾的研究是在不同的长度和时间尺度上进行的,试图单独理解羟基磷灰石和生物磷灰石模型的特征,以及/或与简化的胶原蛋白样模型相互作用。所报告的综述表明了计算方法在处理复杂的生物物理化学系统方面的能力,提供了准确的结果,增加了对硬组织科学的整体认识。