DeFENS, Department of Food, Environmental and Nutritional Sciences-Packaging Division, University of Milan, via Celoria 2, 20133 Milan, Italy.
R&D srl Tecnologie dei Materiali, Galleria Gandhi, 2, 20017 Mazzo di Rho, Italy; Nanovea Inc., 6 Morgan, Ste 156, Irvine, CA 92618, USA.
J Colloid Interface Sci. 2018 Feb 15;512:638-646. doi: 10.1016/j.jcis.2017.10.108. Epub 2017 Oct 31.
Fundamental physical behaviors of materials at the nanoscale level are crucial when local aspects govern the macroscale performance of nanocomposites, e.g., interface and surface phenomena. Because of the increasing interest in biopolymer nanocomposite coatings for many different applications (e.g., optical devices, displays/screens, and packaging), this work investigates the potential of nanoindentation as a method for clarifying the interplay between distinct phases (i.e., organic and inorganic) at local level in thin biopolymer films loaded with nanoparticles. The nanomechanical features of pullulan nanocomposite coatings laid on polyethylene terephthalate (PET) were quantified in terms of elastic modulus (E), hardness (H), and creep (C) through an instrumented indentation test composed of a loading-holding-unloading cycle. Colloidal silica (CS) and cellulose nanocrystals (CNCs) were used as spherical and rod-like nanoparticles, respectively. An overall reinforcing effect was shown for all nanocomposite coatings over the pristine (unfilled) pullulan coating. A size effect was also disclosed for the CS-loaded surfaces, with the highest E value recorded for the largest particles (8.19 ± 0.35 GPa) and the highest H value belonging to the smallest ones (395.41 ± 25.22 MPa). Comparing CS and CNCs, the addition of spherical nanoparticles had a greater effect on the surface hardness than cellulose nanowhiskers (353.50 ± 83.52 MPa and 321.36 ± 43.26 MPa, respectively). As for the elastic modulus, the addition of CS did not provide any improvement over both the bare and CNC-loaded pullulan coatings, whereas the coating including CNCs exhibited higher E values (p < .05). Finally, CS-loaded pullulan coatings were the best performing in terms of C properties, with an average indentation depth of 16.5 ± 1.85 nm under a load of ∼190 μN. These results are discussed in terms of local distribution gradients, surface chemistry of nanoparticles, and how nanoparticle aggregation occurred in the dry nanocomposite coatings.
当局部方面控制纳米复合材料的宏观性能时,材料在纳米尺度上的基本物理行为至关重要,例如界面和表面现象。由于人们对用于许多不同应用的生物聚合物纳米复合材料涂层越来越感兴趣(例如,光学器件、显示器/屏幕和包装),本工作研究了纳米压痕作为一种方法的潜力,以澄清在局部水平加载纳米粒子的薄生物聚合物薄膜中不同相(即有机相与无机相)之间的相互作用。通过由加载-保持-卸载循环组成的仪器化压痕试验,以弹性模量 (E)、硬度 (H) 和蠕变 (C) 的形式量化了聚麦芽三糖纳米复合材料涂层在聚对苯二甲酸乙二醇酯 (PET) 上的纳米力学特性。胶体二氧化硅 (CS) 和纤维素纳米晶 (CNC) 分别用作球形和棒状纳米颗粒。与原始(未填充)聚麦芽三糖涂层相比,所有纳米复合材料涂层均表现出整体增强效果。还揭示了 CS 负载表面的尺寸效应,最大颗粒记录的 E 值最高(8.19 ± 0.35 GPa),最小颗粒的 H 值最高(395.41 ± 25.22 MPa)。将 CS 与 CNC 进行比较时,球形纳米颗粒对表面硬度的影响大于纤维素纳米纤维(分别为 353.50 ± 83.52 MPa 和 321.36 ± 43.26 MPa)。至于弹性模量,与裸聚麦芽三糖和 CNC 负载聚麦芽三糖涂层相比,添加 CS 并没有提供任何改善,而包含 CNC 的涂层表现出更高的 E 值(p <.05)。最后,在约 190 μN 的负载下,CS 负载的聚麦芽三糖涂层在 C 性能方面表现最佳,平均压痕深度为 16.5 ± 1.85 nm。根据局部分布梯度、纳米颗粒的表面化学以及纳米颗粒在干燥纳米复合材料涂层中的聚集方式,讨论了这些结果。