Siders Paul D
Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, 55812, USA.
J Chromatogr A. 2017 Dec 8;1527:97-104. doi: 10.1016/j.chroma.2017.10.056. Epub 2017 Oct 24.
In supercritical fluid chromatography, molecules from the mobile phase adsorb on the stationary phase. Stationary-phase alkylsilane-terminated silica surfaces might adsorb molecules at the silica, among the silanes, on a silane layer, or in pore space between surfaces. Mobile phases of carbon dioxide, pure and modified with methanol, and stationary phases were simulated at the molecular scale. Classical atomistic force fields were used in Gibbs-ensemble hybrid Monte Carlo calculations. Excess adsorption of pure carbon dioxide mobile phase peaked at fluid densities of 0.002-0.003Å. Mobile phase adsorption from 7% methanol in carbon dioxide peaked at lower fluid density. Methanol was preferentially adsorbed from the mixed fluid. Surface silanes prevented direct interaction of fluid-phase molecules with silica. Some adsorbed molecules mixed with tails of bonded silanes; some formed layers above the silanes. Much adsorption occurred by filling the space between surfaces in the stationary-phase model. The distribution in the stationary phase of methanol molecules from a modified fluid phase varied with pressure.
在超临界流体色谱中,流动相中的分子会吸附在固定相上。固定相为烷基硅烷封端的硅胶表面,分子可能会在硅胶处、硅烷之间、硅烷层上或表面之间的孔隙空间中被吸附。对纯二氧化碳以及用甲醇改性的二氧化碳流动相和固定相进行了分子尺度模拟。在吉布斯系综混合蒙特卡罗计算中使用了经典的原子力场。纯二氧化碳流动相的过量吸附在流体密度为0.002 - 0.003Å时达到峰值。二氧化碳中7%甲醇的流动相吸附在较低流体密度时达到峰值。甲醇优先从混合流体中被吸附。表面硅烷阻止了流体相分子与硅胶的直接相互作用。一些吸附的分子与键合硅烷的尾部混合;一些在硅烷上方形成层。在固定相模型中,通过填充表面之间的空间发生了大量吸附。改性流体相中甲醇分子在固定相中的分布随压力而变化。