Suppr超能文献

建立一个群体药代动力学模型以预测非麻醉大鼠中罗匹尼罗的脑分布和多巴胺 D2 受体占有率。

Development of a population pharmacokinetic model to predict brain distribution and dopamine D2 receptor occupancy of raclopride in non-anesthetized rat.

机构信息

Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.

Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.

出版信息

Eur J Pharm Sci. 2018 Jan 1;111:514-525. doi: 10.1016/j.ejps.2017.10.031. Epub 2017 Nov 5.

Abstract

BACKGROUND

Raclopride is a selective antagonist of the dopamine D2 receptor. It is one of the most frequently used in vivo D2 tracers (at low doses) for assessing drug-induced receptor occupancy (RO) in animals and humans. It is also commonly used as a pharmacological blocker (at high doses) to occupy the available D2 receptors and antagonize the action of dopamine or drugs on D2 in preclinical studies. The aims of this study were to comprehensively evaluate its pharmacokinetic (PK) profiles in different brain compartments and to establish a PK-RO model that could predict the brain distribution and RO of raclopride in the freely moving rat using a LC-MS based approach.

METHODS

Rats (n=24) received a 10-min IV infusion of non-radiolabeled raclopride (1.61μmol/kg, i.e. 0.56mg/kg). Plasma and the brain tissues of striatum (with high density of D2 receptors) and cerebellum (with negligible amount of D2 receptors) were collected. Additional microdialysis experiments were performed in some rats (n=7) to measure the free drug concentration in the extracellular fluid of the striatum and cerebellum. Raclopride concentrations in all samples were analyzed by LC-MS. A population PK-RO model was constructed in NONMEM to describe the concentration-time profiles in the unbound plasma, brain extracellular fluid and brain tissue compartments and to estimate the RO based on raclopride-D2 receptor binding kinetics.

RESULTS

In plasma raclopride showed a rapid distribution phase followed by a slower elimination phase. The striatum tissue concentrations were consistently higher than that of cerebellum tissue throughout the whole experimental period (10-h) due to higher non-specific tissue binding and D2 receptor binding in the striatum. Model-based simulations accurately predicted the literature data on rat plasma PK, brain tissue PK and D2 RO at different time points after intravenous or subcutaneous administration of raclopride at tracer dose (RO <10%), sub-pharmacological dose (RO 10%-30%) and pharmacological dose (RO >30%).

CONCLUSION

For the first time a predictive model that could describe the quantitative in vivo relationship between dose, PK and D2 RO of raclopride in non-anesthetized rat was established. The PK-RO model could facilitate the selection of optimal dose and dosing time when raclopride is used as tracer or as pharmacological blocker in various rat studies. The LC-MS based approach, which doses and quantifies a non-radiolabeled tracer, could be useful in evaluating the systemic disposition and brain kinetics of tracers.

摘要

背景

氯丙嗪是多巴胺 D2 受体的选择性拮抗剂。它是最常被用于评估动物和人体内药物诱导受体占有率(RO)的体内 D2 示踪剂(低剂量)之一。它也常被用作药理学阻滞剂(高剂量),以占据可用的 D2 受体并拮抗多巴胺或药物对 D2 的作用,用于临床前研究。本研究的目的是全面评估其在不同脑区的药代动力学(PK)特征,并建立一个 PK-RO 模型,该模型可以使用基于 LC-MS 的方法预测游离运动大鼠中氯丙嗪的脑分布和 RO。

方法

大鼠(n=24)接受非放射性标记氯丙嗪(1.61μmol/kg,即 0.56mg/kg)10 分钟静脉输注。收集纹状体(D2 受体密度高)和小脑(D2 受体含量可忽略不计)的血浆和脑组织。在一些大鼠(n=7)中进行了额外的微透析实验,以测量纹状体和小脑细胞外液中的游离药物浓度。使用 LC-MS 分析所有样品中的氯丙嗪浓度。在 NONMEM 中构建群体 PK-RO 模型,以描述未结合血浆、脑细胞外液和脑组织区室中的浓度-时间曲线,并根据氯丙嗪-D2 受体结合动力学来估计 RO。

结果

在血浆中,氯丙嗪表现出快速分布相,随后是较慢的消除相。由于纹状体组织中的非特异性组织结合和 D2 受体结合较高,整个实验期间(10 小时),纹状体组织浓度始终高于小脑组织浓度。基于模型的模拟准确预测了文献中静脉内或皮下给予氯丙嗪示踪剂量(RO<10%)、亚药理剂量(RO 10%-30%)和药理剂量(RO>30%)后不同时间点大鼠血浆 PK、脑组织 PK 和 D2 RO 的数据。

结论

首次建立了一种可描述非麻醉大鼠中氯丙嗪剂量、PK 和 D2 RO 之间体内定量关系的预测模型。该 PK-RO 模型可有助于在各种大鼠研究中选择氯丙嗪作为示踪剂或药理学阻滞剂的最佳剂量和给药时间。该基于 LC-MS 的方法,可用于评估示踪剂的全身分布和脑动力学,它可用于给药和定量非放射性示踪剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验