Dulic Morana, Cvetesic Nevena, Zivkovic Igor, Palencia Andrés, Cusack Stephen, Bertosa Branimir, Gruic-Sovulj Ita
Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, UMI 3265, Grenoble Cedex 9, France.
J Mol Biol. 2018 Jan 5;430(1):1-16. doi: 10.1016/j.jmb.2017.10.024. Epub 2017 Oct 27.
The intrinsic editing capacities of aminoacyl-tRNA synthetases ensure a high-fidelity translation of the amino acids that possess effective non-cognate aminoacylation surrogates. The dominant error-correction pathway comprises deacylation of misaminoacylated tRNA within the aminoacyl-tRNA synthetase editing site. To assess the origin of specificity of Escherichia coli leucyl-tRNA synthetase (LeuRS) against the cognate aminoacylation product in editing, we followed binding and catalysis independently using cognate leucyl- and non-cognate norvalyl-tRNA and their non-hydrolyzable analogues. We found that the amino acid part (leucine versus norvaline) of (mis)aminoacyl-tRNAs can contribute approximately 10-fold to ground-state discrimination at the editing site. In sharp contrast, the rate of deacylation of leucyl- and norvalyl-tRNA differed by about 10-fold. We further established the critical role for the A76 3'-OH group of the tRNA in post-transfer editing, which supports the substrate-assisted deacylation mechanism. Interestingly, the abrogation of the LeuRS specificity determinant threonine 252 did not improve the affinity of the editing site for the cognate leucine as expected, but instead substantially enhanced the rate of leucyl-tRNA hydrolysis. In line with that, molecular dynamics simulations revealed that the wild-type enzyme, but not the T252A mutant, enforced leucine to adopt the side-chain conformation that promotes the steric exclusion of a putative catalytic water. Our data demonstrated that the LeuRS editing site exhibits amino acid specificity of kinetic origin, arguing against the anticipated prominent role of steric exclusion in the rejection of leucine. This feature distinguishes editing from the synthetic site, which relies on ground-state discrimination in amino acid selection.
氨酰-tRNA合成酶的内在编辑能力确保了对具有有效非同源氨酰化替代物的氨基酸进行高保真翻译。主要的错误校正途径包括在氨酰-tRNA合成酶编辑位点内对错误氨酰化的tRNA进行脱酰基作用。为了评估大肠杆菌亮氨酰-tRNA合成酶(LeuRS)在编辑过程中对同源氨酰化产物的特异性起源,我们分别使用同源亮氨酰-tRNA和非同源正缬氨酰-tRNA及其不可水解类似物跟踪结合和催化过程。我们发现,(错误)氨酰-tRNA的氨基酸部分(亮氨酸与正缬氨酸)在编辑位点的基态区分中可贡献约10倍的作用。与之形成鲜明对比的是,亮氨酰-tRNA和正缬氨酰-tRNA的脱酰基速率相差约10倍。我们进一步确定了tRNA的A76 3'-OH基团在转移后编辑中的关键作用,这支持了底物辅助脱酰基机制。有趣的是,LeuRS特异性决定簇苏氨酸252的缺失并没有如预期那样提高编辑位点对同源亮氨酸的亲和力,反而显著提高了亮氨酰-tRNA的水解速率。与此一致的是,分子动力学模拟表明,野生型酶而非T252A突变体促使亮氨酸采取促进对假定催化水进行空间排斥的侧链构象。我们的数据表明,LeuRS编辑位点表现出动力学起源的氨基酸特异性,这与预期的空间排斥在亮氨酸排斥中的突出作用相悖。这一特征将编辑与合成位点区分开来,合成位点在氨基酸选择中依赖基态区分。