Department of Neurology, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
Department of Psychiatry, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
Mol Psychiatry. 2018 Oct;23(10):2078-2089. doi: 10.1038/mp.2017.213. Epub 2017 Nov 7.
Functional imaging and gene expression studies both implicate the medial prefrontal cortex (mPFC), particularly deep-layer projection neurons, as a potential locus for autism pathology. Here, we explored how specific deep-layer prefrontal neurons contribute to abnormal physiology and behavior in mouse models of autism. First, we find that across three etiologically distinct models-in utero valproic acid (VPA) exposure, CNTNAP2 knockout and FMR1 knockout-layer 5 subcortically projecting (SC) neurons consistently exhibit reduced input resistance and action potential firing. To explore how altered SC neuron physiology might impact behavior, we took advantage of the fact that in deep layers of the mPFC, dopamine D2 receptors (D2Rs) are mainly expressed by SC neurons, and used D2-Cre mice to label D2R+ neurons for calcium imaging or optogenetics. We found that social exploration preferentially recruits mPFC D2R+ cells, but that this recruitment is attenuated in VPA-exposed mice. Stimulating mPFC D2R+ neurons disrupts normal social interaction. Conversely, inhibiting these cells enhances social behavior in VPA-exposed mice. Importantly, this effect was not reproduced by nonspecifically inhibiting mPFC neurons in VPA-exposed mice, or by inhibiting D2R+ neurons in wild-type mice. These findings suggest that multiple forms of autism may alter the physiology of specific deep-layer prefrontal neurons that project to subcortical targets. Furthermore, a highly overlapping population-prefrontal D2R+ neurons-plays an important role in both normal and abnormal social behavior, such that targeting these cells can elicit potentially therapeutic effects.
功能成像和基因表达研究都表明,内侧前额叶皮层(mPFC),特别是深层投射神经元,可能是自闭症病理的潜在位置。在这里,我们探讨了特定的深层前额叶神经元如何导致自闭症小鼠模型中的异常生理和行为。首先,我们发现,在三种病因不同的模型中 - 子宫内暴露于丙戊酸(VPA)、CNTNAP2 敲除和 FMR1 敲除 - 层 5 皮质下投射(SC)神经元始终表现出降低的输入电阻和动作电位放电。为了探讨改变的 SC 神经元生理学如何影响行为,我们利用了这样一个事实,即在 mPFC 的深层,多巴胺 D2 受体(D2R)主要由 SC 神经元表达,并且使用 D2-Cre 小鼠对 D2R+神经元进行钙成像或光遗传学标记。我们发现,社会探索优先招募 mPFC D2R+细胞,但这种招募在 VPA 暴露的小鼠中减弱。刺激 mPFC D2R+神经元会破坏正常的社交互动。相反,抑制这些细胞会增强 VPA 暴露小鼠的社交行为。重要的是,这种效果在 VPA 暴露的小鼠中非特异性抑制 mPFC 神经元或在野生型小鼠中抑制 D2R+神经元时没有重现。这些发现表明,多种形式的自闭症可能会改变投射到皮质下靶标的特定深层前额叶神经元的生理学。此外,一个高度重叠的群体 - 前额叶 D2R+神经元 - 在正常和异常社交行为中都起着重要作用,因此靶向这些细胞可以产生潜在的治疗效果。