Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao 266101, P. R. China.
University of Chinese Academy of Sciences , Beijing 100049, P. R. China.
ACS Appl Mater Interfaces. 2017 Nov 29;9(47):41462-41472. doi: 10.1021/acsami.7b11342. Epub 2017 Nov 14.
Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li/Li, an ionic conductivity of 6.79 × 10 S cm at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn ions at 25 and 55 °C. Thus, the LiNiMnO/Li and LiNiMnO/LiTiO cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.
具有高能量密度的高压锂电池的电化学性能受到限制,这是由于电解质的不稳定性和电极/电解质界面的反应性。因此,通过受“双剑合璧”启发的原位聚合,引入了一种交联聚合物网络聚(丙烯腈-2-甲基丙烯酸-2-环氧乙烷乙酯-甲基丙烯酸甲酯)(PAMM)基电解质,这类似于中国传统功夫故事中的协同效应,即 1+1>2。聚(丙烯腈)和聚(甲基丙烯酸甲酯)基体系作为锂离子电池的电解质材料非常有前景,其中酸酐和丙烯酰胺基团分别提供高电压稳定性和快速离子导电性。因此,交联 PAMM 基电解质具有显著的综合增强效果,包括超过 5 V vs Li/Li 的电化学稳定窗口、室温下为 6.79×10 S cm 的离子电导率、高机械强度(27.5 MPa)、良好的耐燃性以及与 Li 金属优异的界面相容性。还证明了这种凝胶聚合物电解质抑制了在 25 和 55°C 下 Mn 离子溶解带来的负面影响。因此,使用优化的原位聚合交联 PAMM 基凝胶聚合物电解质的 LiNiMnO/Li 和 LiNiMnO/LiTiO 电池在室温下甚至在 55°C 下都能提供稳定的充放电曲线和优异的倍率性能。这些发现表明,交联 PAMM 是用于 5 V 级高压凝胶聚合物电解质的有前途的候选材料,可用于高能锂离子电池。