Suppr超能文献

危重症接受肾脏替代治疗患者 60 天病死率预测:预测模型的外部验证。

Prediction of 60-Day Case Fatality in Critically Ill Patients Receiving Renal Replacement Therapy: External Validation of a Prediction Model.

机构信息

Medical Sciences Postgraduate Program, Department of Clinical Medicine, Universidade Federal do Ceará, Fortaleza, Ceara, Brazil.

Medical Sciences Postgraduate Program, Universidade de Fortaleza (UNIFOR), Fortaleza, Ceara, Brazil.

出版信息

Shock. 2018 Aug;50(2):156-161. doi: 10.1097/SHK.0000000000001054.

Abstract

BACKGROUND

A recent prognostic model, predicting 60-day case fatality in critically ill patients requiring renal replacement therapy (RRT), has been developed (Acute Renal Failure Trial Network [ATN] study). Because many prognostic models are suggested in literature, but just a few have found its way into clinical practice, we aimed to externally validate this prediction model in an independent cohort.

METHODS

A total of 1,053 critically ill patients requiring RRT from the MIMIC-III database were analyzed. The models' discrimination was evaluated using c-statistics. Calibration was evaluated by Hosmer-Lemeshow (H-L) test and GiViTi calibration belt.

RESULTS

In a case-mix population, including patients with normal or altered serum creatinine (sCr) at intensive care unit admission, discrimination was moderate, with a c-statistic of 0.71 in the nonintegerized risk model. In patients with altered baseline sCr, better discrimination was achieved with the integer risk model (0.76, 95% confidence interval, 0.71-0.81). As for the calibration, although the H-L test was good only in patients with normal/slightly altered sCr at admission, the calibration belt disclosed no significant deviations from the bisector line for any of the models in patients, regardless of admission sCr. Of note, a refitted model had a c-statistics of 0.85, similar to the derivation cohort.

CONCLUSIONS

The ATN prognostic model can be useful in a broad cohort of critically ill patients. Although it showed only moderate discrimination capacity when patients with elevated admission sCr were included, using a refitted model improved it, illustrating the need for continuous external validation and updating of prognostic models over time before their implementation in clinical practice.

摘要

背景

最近开发了一种预测需要肾脏替代治疗(RRT)的危重症患者 60 天病死率的预后模型(急性肾损伤试验网络[ATN]研究)。由于文献中提出了许多预后模型,但只有少数模型进入了临床实践,我们旨在将该预测模型在一个独立队列中进行外部验证。

方法

分析了来自 MIMIC-III 数据库的 1053 名需要 RRT 的危重症患者。使用 C 统计量评估模型的区分度。通过 Hosmer-Lemeshow(H-L)检验和 GiviTi 校准带评估校准。

结果

在包括 ICU 入院时血清肌酐(sCr)正常或改变的患者的病例组合人群中,非整数风险模型的区分度为中度,C 统计量为 0.71。在基线 sCr 改变的患者中,整数风险模型的区分度更好,为 0.76(95%置信区间,0.71-0.81)。至于校准,尽管 H-L 检验仅在入院时 sCr 正常/略有改变的患者中良好,但校准带显示任何模型在患者中均未出现与平分线的显著偏离,无论入院 sCr 如何。值得注意的是,一个重新拟合的模型的 C 统计量为 0.85,与推导队列相似。

结论

ATN 预后模型可用于广泛的危重症患者群体。尽管当纳入入院时 sCr 升高的患者时,该模型显示出仅中度的区分能力,但使用重新拟合的模型可提高其区分能力,这表明在将预后模型应用于临床实践之前,需要不断进行外部验证和更新,以适应时间的推移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验