Chang Hsin-Hsiung, Chiang Jung-Hsien, Wang Chi-Shiang, Chiu Ping-Fang, Abdel-Kader Khaled, Chen Huiwen, Siew Edward D, Yabes Jonathan, Murugan Raghavan, Clermont Gilles, Palevsky Paul M, Jhamb Manisha
Division of Nephrology, Department of Internal Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Donggang 928, Taiwan.
Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701, Taiwan.
J Clin Med. 2022 Sep 8;11(18):5289. doi: 10.3390/jcm11185289.
Background: General severity of illness scores are not well calibrated to predict mortality among patients receiving renal replacement therapy (RRT) for acute kidney injury (AKI). We developed machine learning models to make mortality prediction and compared their performance to that of the Sequential Organ Failure Assessment (SOFA) and HEpatic failure, LactatE, NorepInephrine, medical Condition, and Creatinine (HELENICC) scores. Methods: We extracted routinely collected clinical data for AKI patients requiring RRT in the MIMIC and eICU databases. The development models were trained in 80% of the pooled dataset and tested in the rest of the pooled dataset. We compared the area under the receiver operating characteristic curves (AUCs) of four machine learning models (multilayer perceptron [MLP], logistic regression, XGBoost, and random forest [RF]) to that of the SOFA, nonrenal SOFA, and HELENICC scores and assessed calibration, sensitivity, specificity, positive (PPV) and negative (NPV) predicted values, and accuracy. Results: The mortality AUC of machine learning models was highest for XGBoost (0.823; 95% confidence interval [CI], 0.791−0.854) in the testing dataset, and it had the highest accuracy (0.758). The XGBoost model showed no evidence of lack of fit with the Hosmer−Lemeshow test (p > 0.05). Conclusion: XGBoost provided the highest performance of mortality prediction for patients with AKI requiring RRT compared with previous scoring systems.
疾病严重程度通用评分在预测接受急性肾损伤(AKI)肾脏替代治疗(RRT)患者的死亡率方面校准不佳。我们开发了机器学习模型来进行死亡率预测,并将其性能与序贯器官衰竭评估(SOFA)和肝功能衰竭、乳酸、去甲肾上腺素、病情及肌酐(HELENICC)评分的性能进行比较。方法:我们从MIMIC和eICU数据库中提取了接受RRT的AKI患者的常规收集临床数据。开发模型在合并数据集的80%中进行训练,并在合并数据集的其余部分进行测试。我们将四种机器学习模型(多层感知器[MLP]、逻辑回归、XGBoost和随机森林[RF])的受试者工作特征曲线下面积(AUC)与SOFA、非肾SOFA和HELENICC评分的AUC进行比较,并评估校准、敏感性、特异性、阳性(PPV)和阴性(NPV)预测值以及准确性。结果:在测试数据集中,XGBoost的机器学习模型死亡率AUC最高(0.823;95%置信区间[CI],0.791−0.854),且其准确性最高(0.758)。XGBoost模型在Hosmer−Lemeshow检验中未显示出拟合不足的证据(p>0.05)。结论:与先前的评分系统相比,XGBoost在预测需要RRT的AKI患者死亡率方面表现最佳。