Suppr超能文献

美金刚可预防海马兴奋性突触的急性放射性毒性。

Memantine prevents acute radiation-induced toxicities at hippocampal excitatory synapses.

机构信息

Department of Neuroscience, Baylor College of Medicine, Houston, Texas.

Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.

出版信息

Neuro Oncol. 2018 Apr 9;20(5):655-665. doi: 10.1093/neuonc/nox203.

Abstract

BACKGROUND

Memantine has shown clinical utility in preventing radiation-induced cognitive impairment, but the mechanisms underlying its protective effects remain unknown. We hypothesized that abnormal glutamate signaling causes radiation-induced abnormalities in neuronal structure and that memantine prevents synaptic toxicity.

METHODS

Hippocampal cultures expressing enhanced green fluorescent protein were irradiated or sham-treated and their dendritic spine morphology assessed at acute (minutes) and later (days) times using high-resolution confocal microscopy. Excitatory synapses, defined by co-localization of the pre- and postsynaptic markers vesicular glutamate transporter 1 and postsynaptic density protein 95, were also analyzed. Neurons were pretreated with vehicle, the N-methyl-d-aspartate-type glutamate receptor antagonist memantine, or the glutamate scavenger glutamate pyruvate transaminase to assess glutamate signaling. For animal studies, Thy-1-YFP mice were treated with whole-brain radiotherapy or sham with or without memantine.

RESULTS

Unlike previously reported long-term losses of dendritic spines, we found that the acute response to radiation is an initial increase in spines and excitatory synapses followed by a decrease in spine/synapse density with altered spine dynamics. Memantine pre-administration prevented this radiation-induced synaptic remodeling.

CONCLUSION

These results demonstrate that radiation causes rapid, dynamic changes in synaptic structural plasticity, implicate abnormal glutamate signaling in cognitive dysfunction following brain irradiation, and describe a protective mechanism of memantine.

摘要

背景

美金刚已被证明在预防放射性认知障碍方面具有临床应用价值,但尚不清楚其保护作用的机制。我们假设异常的谷氨酸信号导致放射性诱导的神经元结构异常,而美金刚可预防突触毒性。

方法

用表达增强型绿色荧光蛋白的海马培养物进行照射或假处理,并在急性(分钟)和晚期(天)使用高分辨率共聚焦显微镜评估其树突棘形态。还分析了兴奋性突触,其定义为前突触和后突触标志物囊泡谷氨酸转运体 1 和后突触密度蛋白 95 的共定位。用载体、N-甲基-D-天冬氨酸型谷氨酸受体拮抗剂美金刚或谷氨酸清除剂谷氨酸丙酮酸转氨酶对神经元进行预处理,以评估谷氨酸信号。在动物研究中,用全脑放射治疗或假处理 Thy-1-YFP 小鼠,并用或不用美金刚处理。

结果

与先前报道的长期树突棘损失不同,我们发现,对辐射的急性反应是初始的树突棘和兴奋性突触增加,随后是树突棘/突触密度降低,同时伴有树突棘动力学改变。美金刚预处理可预防这种放射性诱导的突触重塑。

结论

这些结果表明,辐射会导致突触结构可塑性的快速、动态变化,提示异常的谷氨酸信号在脑照射后认知功能障碍中起作用,并描述了美金刚的保护机制。

相似文献

引用本文的文献

7
Radiation-Induced Cognitive Decline: Challenges and Solutions.辐射诱导的认知衰退:挑战与解决方案
Cancer Manag Res. 2024 Aug 21;16:1043-1052. doi: 10.2147/CMAR.S441360. eCollection 2024.
9
Breast Cancer Brain Metastasis: A Comprehensive Review.乳腺癌脑转移:全面综述。
JCO Oncol Pract. 2024 Oct;20(10):1348-1359. doi: 10.1200/OP.23.00794. Epub 2024 May 15.
10

本文引用的文献

6
Cranial irradiation compromises neuronal architecture in the hippocampus.颅脑照射会损害海马中的神经元结构。
Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12822-7. doi: 10.1073/pnas.1307301110. Epub 2013 Jul 15.
10
Radiation induces acute alterations in neuronal function.辐射会导致神经元功能的急性改变。
PLoS One. 2012;7(5):e37677. doi: 10.1371/journal.pone.0037677. Epub 2012 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验