Institut für Chemie, Technische Universität Berlin , Straße des 17. Juni 135, 10623 Berlin, Germany.
Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel.
J Am Chem Soc. 2017 Dec 6;139(48):17201-17212. doi: 10.1021/jacs.7b10139. Epub 2017 Nov 17.
This Perspective discusses a story of one molecule (methane), a few metal-oxide cationic clusters (MOCCs), dopants, metal-carbide cations, oriented-electric fields (OEFs), and a dizzying mechanistic landscape of methane activation! One mechanism is hydrogen atom transfer (HAT), which occurs whenever the MOCC possesses a localized oxyl radical (M-O). Whenever the radical is delocalized, e.g., in [MgO] the HAT barrier increases due to the penalty of radical localization. Adding a dopant (GaO) to [MgO] localizes the radical and HAT transpires. Whenever the radical is located on the metal centers as in [AlO] the mechanism crosses over to proton-coupled electron transfer (PCET), wherein the positive Al center acts as a Lewis acid that coordinates the methane molecule, while one of the bridging oxygen atoms abstracts a proton, and the negatively charged CH moiety relocates to the metal fragment. We provide a diagnostic plot of barriers vs reactants' distortion energies, which allows the chemist to distinguish HAT from PCET. Thus, doping of [MgO] by AlO enables HAT and PCET to compete. Similarly, [ZnO] activates methane by PCET generating many products. Adding a CHCN ligand to form [(CHCN)ZnO] leads to a single HAT product. The CHCN dipole acts as an OEF that switches off PCET. [MC] cations (M = Au, Cu) act by different mechanisms, dictated by the M-C bond covalence. For example, Cu, which bonds the carbon atom mostly electrostatically, performs coupling of C to methane to yield ethylene, in a single almost barrier-free step, with an unprecedented atomic choreography catalyzed by the OEF of Cu.
这篇观点文章探讨了一个关于一个分子(甲烷)、几个金属氧化物阳离子簇(MOCC)、掺杂剂、金属碳化物阳离子、取向电场(OEF)以及令人眼花缭乱的甲烷活化机理景观的故事!一种机制是氢原子转移(HAT),只要 MOCC 具有局部过氧自由基(M-O),就会发生 HAT。只要自由基离域,例如在 [MgO] 中,由于自由基定位的代价,HAT 势垒会增加。向 [MgO] 添加掺杂剂(GaO)会使自由基定位,从而发生 HAT。只要自由基位于金属中心,例如在 [AlO] 中,机制就会转变为质子耦合电子转移(PCET),其中正的 Al 中心充当路易斯酸,与甲烷分子配位,同时桥接氧原子之一夺取质子,带负电荷的 CH 部分迁移到金属片段。我们提供了一个障碍与反应物变形能的诊断图,这使得化学家能够区分 HAT 和 PCET。因此,通过 AlO 掺杂 [MgO] 可以使 HAT 和 PCET 竞争。同样,[ZnO] 通过 PCET 激活甲烷,生成多种产物。向 [(CHCN)ZnO] 添加 CHCN 配体只会得到单一的 HAT 产物。CHCN 偶极子充当 OEF,可关闭 PCET。[MC] 阳离子(M = Au、Cu)通过不同的机制起作用,这些机制由 M-C 键的共价性决定。例如,Cu 主要通过静电方式与碳原子键合,通过单步几乎无势垒的步骤,将 C 与甲烷耦合生成乙烯,这种前所未有的原子舞蹈是由 Cu 的 OEF 催化的。