Departement Chemie, Universität Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland.
Acc Chem Res. 2013 Jul 16;46(7):1517-26. doi: 10.1021/ar300289x. Epub 2013 Feb 13.
Proton-coupled electron transfer (PCET) plays a crucial role in many enzymatic reactions and is relevant for a variety of processes including water oxidation, nitrogen fixation, and carbon dioxide reduction. Much of the research on PCET has focused on transfers between molecules in their electronic ground states, but increasingly researchers are investigating PCET between photoexcited reactants. This Account describes recent studies of excited-state PCET with d(6) metal complexes emphasizing work performed in my laboratory. Upon photoexcitation, some complexes release an electron and a proton to benzoquinone reaction partners. Others act as combined electron-proton acceptors in the presence of phenols. As a result, we can investigate photoinduced PCET involving electron and proton transfer in a given direction, a process that resembles hydrogen-atom transfer (HAT). In other studies, the photoexcited metal complexes merely serve as electron donors or electron acceptors because the proton donating and accepting sites are located on other parts of the molecular PCET ensemble. We and others have used this multisite design to explore so-called bidirectional PCET which occurs in many enzymes. A central question in all of these studies is whether concerted proton-electron transfer (CPET) can compete kinetically with sequential electron and proton transfer steps. Short laser pulses can trigger excited-state PCET, making it possible to investigate rapid reactions. Luminescence spectroscopy is a convenient tool for monitoring PCET, but unambiguous identification of reaction products can require a combination of luminescence spectroscopy and transient absorption spectroscopy. Nevertheless, in some cases, distinguishing between PCET photoproducts and reaction products formed by simple photoinduced electron transfer (ET) (reactions that don't include proton transfer) is tricky. Some of the studies presented here deal directly with this important problem. In one case study we employed a cyclometalated iridium(III) complex. Our other studies with ruthenium(II) complexes and phenols focused on systematic variations of the reaction free energies for the CPET, ET, and proton transfer (PT) steps to explore their influence on the overall PCET reaction. Still other work with rhenium(I) complexes concentrated on the question of how the electronic structure of the metal-to-ligand charge transfer (MLCT) excited states affects PCET. We used covalent rhenium(I)-phenol dyads to explore the influence of the electron donor-electron acceptor distance on bidirectional PCET. In covalent triarylamine-Ru(bpy)₃²⁺/Os(bpy)₃²⁺-anthraquinone triads (bpy = 2,2'-bipyridine), hydrogen-bond donating solvents significantly lengthened the lifetimes of photogenerated electron/hole pairs because of hydrogen-bonding to the quinone radical anion. Until now, comparatively few researchers have investigated this variation of PCET: the strengthening of H-bonds upon photoreduction.
质子耦合电子转移(PCET)在许多酶反应中起着至关重要的作用,并且与包括水氧化、氮固定和二氧化碳还原在内的各种过程相关。对 PCET 的大部分研究都集中在电子基态分子之间的转移上,但越来越多的研究人员正在研究光激发反应物之间的 PCET。本综述描述了 d(6) 金属配合物中激发态 PCET 的最新研究进展,重点介绍了我实验室的工作。光激发后,一些配合物将电子和质子释放到苯醌反应伙伴上。其他配合物在酚存在下充当电子-质子共受体。因此,我们可以研究给定方向的光诱导 PCET 涉及电子和质子转移,这一过程类似于氢原子转移(HAT)。在其他研究中,光激发的金属配合物仅仅作为电子供体或电子受体,因为质子供体和受体位点位于分子 PCET 组件的其他部分上。我们和其他人使用这种多站点设计来探索许多酶中存在的所谓双向 PCET。所有这些研究中的一个核心问题是协同质子-电子转移(CPET)是否可以在动力学上与顺序电子和质子转移步骤竞争。短激光脉冲可以触发激发态 PCET,从而可以研究快速反应。荧光光谱是监测 PCET 的一种方便工具,但要明确识别反应产物可能需要荧光光谱和瞬态吸收光谱的结合。然而,在某些情况下,区分 PCET 光产物和由简单光诱导电子转移(ET)形成的反应产物(不包括质子转移的反应)是很棘手的。这里介绍的一些研究直接处理了这个重要问题。在一个案例研究中,我们使用了环金属化铱(III)配合物。我们用钌(II)配合物和酚进行的其他研究集中于 CPET、ET 和质子转移(PT)步骤的反应自由能的系统变化,以探索它们对整体 PCET 反应的影响。用铼(I)配合物进行的其他工作则集中于金属-配体电荷转移(MLCT)激发态的电子结构如何影响 PCET 的问题。我们使用共价铼(I)-酚二聚体来探索电子给体-电子受体距离对双向 PCET 的影响。在共价三芳基胺-Ru(bpy)₃²⁺/Os(bpy)₃²⁺-蒽醌三联体(bpy = 2,2'-联吡啶)中,由于与醌自由基阴离子形成氢键,供氢溶剂显著延长了光生电子/空穴对的寿命。到目前为止,只有少数研究人员研究了这种 PCET 的变化:光还原时氢键的增强。