Suppr超能文献

微血管内皮的生物物理特性:启动和传导电信号的要求。

Biophysical properties of microvascular endothelium: Requirements for initiating and conducting electrical signals.

作者信息

Kapela Adam, Behringer Erik J, Segal Steven S, Tsoukias Nikolaos M

机构信息

Department of Biomedical Engineering, Florida International University, Miami, FL, USA.

Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.

出版信息

Microcirculation. 2018 Feb;25(2). doi: 10.1111/micc.12429.

Abstract

OBJECTIVE

Electrical signaling along the endothelium underlies spreading vasodilation and blood flow control. We use mathematical modeling to determine the electrical properties of the endothelium and gain insight into the biophysical determinants of electrical conduction.

METHODS

Electrical conduction data along endothelial tubes (40 μm wide, 2.5 mm long) isolated from mouse skeletal muscle resistance arteries were analyzed using cable equations and a multicellular computational model.

RESULTS

Responses to intracellular current injection attenuate with an axial length constant (λ) of 1.2-1.4 mm. Data were fitted to estimate the axial (r ; 10.7 MΩ/mm) and membrane (r ; 14.5 MΩ∙mm) resistivities, EC membrane resistance (R ; 12 GΩ), and EC-EC coupling resistance (R ; 4.5 MΩ) and predict that stimulation of ≥30 neighboring ECs is required to elicit 1 mV of hyperpolarization at distance = 2.5 mm. Opening Ca -activated K channels (K ) along the endothelium reduced λ by up to 55%.

CONCLUSIONS

High R makes the endothelium sensitive to electrical stimuli and able to conduct these signals effectively. Whereas the activation of a group of ECs is required to initiate physiologically relevant hyperpolarization, this requirement is increased by myoendothelial coupling and K activation along the endothelium inhibits conduction by dissipating electrical signals.

摘要

目的

内皮细胞上的电信号是血管舒张扩展和血流控制的基础。我们使用数学建模来确定内皮细胞的电特性,并深入了解电传导的生物物理决定因素。

方法

使用电缆方程和多细胞计算模型分析从小鼠骨骼肌阻力动脉分离的内皮管(宽40μm,长2.5mm)上的电传导数据。

结果

对细胞内电流注入的反应以1.2 - 1.4mm的轴向长度常数(λ)衰减。通过数据拟合来估计轴向电阻率(r;10.7MΩ/mm)和膜电阻率(r;14.5MΩ∙mm)、内皮细胞膜电阻(R;12GΩ)以及内皮细胞 - 内皮细胞耦合电阻(R;4.5MΩ),并预测在距离 = 2.5mm处引发1mV超极化需要刺激≥30个相邻的内皮细胞。沿内皮细胞开放钙激活钾通道(K)可使λ降低多达55%。

结论

高R值使内皮细胞对电刺激敏感,并能够有效地传导这些信号。虽然需要一组内皮细胞被激活才能引发生理相关的超极化,但这种需求会因肌内皮耦合而增加,并且沿内皮细胞的K激活会通过耗散电信号来抑制传导。

相似文献

2
Tuning electrical conduction along endothelial tubes of resistance arteries through Ca(2+)-activated K(+) channels.
Circ Res. 2012 May 11;110(10):1311-21. doi: 10.1161/CIRCRESAHA.111.262592. Epub 2012 Apr 5.
3
Aging impairs electrical conduction along endothelium of resistance arteries through enhanced Ca2+-activated K+ channel activation.
Arterioscler Thromb Vasc Biol. 2013 Aug;33(8):1892-901. doi: 10.1161/ATVBAHA.113.301514. Epub 2013 May 30.
4
Calcium and electrical signalling along endothelium of the resistance vasculature.
Basic Clin Pharmacol Toxicol. 2012 Jan;110(1):80-6. doi: 10.1111/j.1742-7843.2011.00798.x. Epub 2011 Oct 20.
9
Spreading the signal for vasodilatation: implications for skeletal muscle blood flow control and the effects of ageing.
J Physiol. 2012 Dec 15;590(24):6277-84. doi: 10.1113/jphysiol.2012.239673. Epub 2012 Aug 13.
10
Smooth muscle mediates circumferential conduction of hyperpolarization and relaxation to focal endothelial cell activation in large coronary arteries.
Naunyn Schmiedebergs Arch Pharmacol. 2007 Apr;375(2):85-94. doi: 10.1007/s00210-007-0149-7. Epub 2007 Mar 6.

引用本文的文献

3
Endothelial TRPV4/Cx43 Signaling Complex Regulates Vasomotor Tone in Resistance Arteries.
bioRxiv. 2024 Jul 25:2024.07.25.604930. doi: 10.1101/2024.07.25.604930.
4
The conducted vasomotor response and the principles of electrical communication in resistance arteries.
Physiol Rev. 2024 Jan 1;104(1):33-84. doi: 10.1152/physrev.00035.2022. Epub 2023 Jul 6.
5
Modeling Reactive Hyperemia to Better Understand and Assess Microvascular Function: A Review of Techniques.
Ann Biomed Eng. 2023 Mar;51(3):479-492. doi: 10.1007/s10439-022-03134-5. Epub 2023 Jan 28.
6
A Biophysical Model for Cardiovascular Effects of Acupuncture-Underlying Mechanisms Based on First Principles.
Med Acupunct. 2022 Dec 1;34(6):353-370. doi: 10.1089/acu.2022.0050. Epub 2022 Dec 12.
9
Lack of Connexins 40 and 45 Reduces Local and Conducted Vasoconstrictor Responses in the Murine Afferent Arterioles.
Front Physiol. 2020 Aug 7;11:961. doi: 10.3389/fphys.2020.00961. eCollection 2020.
10
The capillary Kir channel as sensor and amplifier of neuronal signals: Modeling insights on K-mediated neurovascular communication.
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16626-16637. doi: 10.1073/pnas.2000151117. Epub 2020 Jun 29.

本文引用的文献

1
Capillary K-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow.
Nat Neurosci. 2017 May;20(5):717-726. doi: 10.1038/nn.4533. Epub 2017 Mar 20.
3
Stochastic model of endothelial TRPV4 calcium sparklets: effect of bursting and cooperativity on EDH.
Biophys J. 2015 Mar 24;108(6):1566-1576. doi: 10.1016/j.bpj.2015.01.034.
5
Tuning electrical conduction along endothelial tubes of resistance arteries through Ca(2+)-activated K(+) channels.
Circ Res. 2012 May 11;110(10):1311-21. doi: 10.1161/CIRCRESAHA.111.262592. Epub 2012 Apr 5.
6
Applicability of cable theory to vascular conducted responses.
Biophys J. 2012 Mar 21;102(6):1352-62. doi: 10.1016/j.bpj.2012.01.055. Epub 2012 Mar 20.
8
Temperature effects on morphological integrity and Ca²⁺ signaling in freshly isolated murine feed artery endothelial cell tubes.
Am J Physiol Heart Circ Physiol. 2011 Sep;301(3):H773-83. doi: 10.1152/ajpheart.00214.2011. Epub 2011 Jun 24.
10
Regulation of blood flow in the microcirculation: role of conducted vasodilation.
Acta Physiol (Oxf). 2011 Jul;202(3):271-84. doi: 10.1111/j.1748-1716.2010.02244.x. Epub 2011 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验