Suppr超能文献

可调节蛋黄-壳多孔硅@碳的合成,用于优化锂离子电池的 Si/C 基负极。

Tunable Synthesis of Yolk-Shell Porous Silicon@Carbon for Optimizing Si/C-Based Anode of Lithium-Ion Batteries.

机构信息

Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002, China.

College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027, China.

出版信息

ACS Appl Mater Interfaces. 2017 Dec 6;9(48):42084-42092. doi: 10.1021/acsami.7b13035. Epub 2017 Nov 17.

Abstract

Significant "breathing effect" calls for exploring efficient strategies to address the intrinsic issues of silicon anode of lithium-ion batteries (LIBs). We here report a controllable synthetic route to fabricate the silicon-carbon hybrids, in which porous silicon nanoparticles (p-SiNPs) are loaded in void carbon spheres by forming the yolk-shell p-SiNPs@hollow carbon (HC) nanohybrids tunable. A set of controlled experiments accompanying with systematic characterizations demonstrate that the void space and mass loading of Si can be adjusted in an effective way so that the nanostructure can be optimized with achieving improved electrochemical performance as anode of lithium-ion batteries (LIBs). The optimized p-SiNPs@HC nanohybrids show excellent performance as anode for Li-ion battery, delivering a capacity of more than 1400 mA h g after 100 cycles at 0.2 A g and 720 mA h g at a high current density of 4 A g. The present work may provide us with an attractive and promising strategy for advancing Si-based anode materials due to advantages of tunable structure of silicon-carbon nanohybrids for optimizing electrochemical performance.

摘要

显著的“呼吸效应”要求探索有效的策略来解决锂离子电池(LIBs)硅阳极的固有问题。我们在这里报告了一种可控的合成途径来制备硅-碳杂化材料,其中多孔硅纳米颗粒(p-SiNPs)通过形成蛋黄壳 p-SiNPs@空心碳(HC)纳米杂化物来负载在有空腔的碳球中。一组伴随系统表征的对照实验表明,可以有效地调节 Si 的空隙空间和质量负载,从而可以优化纳米结构,以实现作为锂离子电池(LIBs)阳极的电化学性能的提高。优化的 p-SiNPs@HC 纳米杂化物作为锂离子电池的阳极表现出优异的性能,在 0.2 A g 的电流密度下经过 100 次循环后,容量超过 1400 mA h g,在 4 A g 的高电流密度下,容量为 720 mA h g。由于硅-碳纳米杂化物的结构可调,本工作可为推进基于硅的阳极材料提供一种有吸引力和有前途的策略,从而优化电化学性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验