i3S - Instituto de Inovação e Investigação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
i3S - Instituto de Inovação e Investigação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
Biomaterials. 2018 Feb;154:34-47. doi: 10.1016/j.biomaterials.2017.10.051. Epub 2017 Oct 31.
Efficient cell delivery strategies are urgently needed to improve the outcome of cell-based pro-angiogenic therapies. This study describes the design of an injectable cell delivery platform, based on biomaterial-guided morphogenesis principles. Soft high-mannuronic acid alginate microgels, oxidized and functionalized with integrin-binding peptides, provided adequate biochemical/biomechanical cues for the co-assembly of mesenchymal stem cells and outgrowth endothelial cells (OEC) into pre-vascularized microtissues. In vitro priming conditions regulated OEC tubulogenesis, which only occurred under normoxia (+O) in the presence of angiogenic factors (+GF) and, importantly, did not revert in an ischemic-like environment. Primed (+O+GF) microgel-entrapped cells secreted a large variety of angiogenesis-related proteins and produced endogenous extracellular-matrix, rich in fibronectin and collagen type I, fostering cell-cell/cell-matrix interactions and establishing a stable angiogenic niche. Extending the pre-culture time resulted in higher cell outward migration and in vivo angiogenic potential. Microgels partially disintegrated upon implantation in chick embryos, promoting interaction between pre-vascularized microtissues and the host. Preserved human vascular structures were still detected in vivo, and human cells showed the ability to migrate and integrate with the chick vasculature. Our results suggest that an integrated approach combining pro-angiogenic cells, cell-instructive microgels and adequate in vitro priming may provide the basis for successful therapeutic angiogenesis.
为了提高细胞基促血管生成疗法的效果,迫切需要有效的细胞输送策略。本研究描述了一种基于生物材料引导形态发生原理的可注射细胞输送平台的设计。经过氧化和整合素结合肽功能化的高曼尼酸海藻酸钠软微凝胶为间充质干细胞和生长血管内皮细胞(OEC)共组装成预血管化微组织提供了足够的生化/生物力学线索。体外启动条件调节了 OEC 的管状形成,仅在存在血管生成因子(+GF)的正常氧(+O)条件下发生,重要的是,在类似缺血的环境中不会逆转。经过预培养(+O+GF)的微凝胶包封细胞分泌了大量与血管生成相关的蛋白质,并产生富含纤维连接蛋白和 I 型胶原的内源性细胞外基质,促进细胞-细胞/细胞-基质相互作用,并建立稳定的血管生成龛。延长预培养时间会导致更高的细胞向外迁移和体内血管生成潜力。微凝胶在植入鸡胚时会部分分解,促进预血管化微组织与宿主之间的相互作用。在体内仍检测到保存的人类血管结构,并且人类细胞显示出与鸡血管系统迁移和整合的能力。我们的结果表明,结合促血管生成细胞、细胞指令性微凝胶和适当的体外启动的综合方法可能为成功的治疗性血管生成提供基础。