Suppr超能文献

用于三维细胞接触导向的微结构点击水凝胶

Microstructured click hydrogels for cell contact guidance in 3D.

作者信息

Neves Mariana I, Bidarra Sílvia J, Magalhães Mariana V, Torres Ana L, Moroni Lorenzo, Barrias Cristina C

机构信息

i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.

INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal.

出版信息

Mater Today Bio. 2023 Mar 10;19:100604. doi: 10.1016/j.mtbio.2023.100604. eCollection 2023 Apr.

Abstract

The topography of the extracellular matrix (ECM) is a major biophysical regulator of cell behavior. While this has inspired the design of cell-instructive biomaterials, the ability to present topographic cues to cells in a true 3D setting remains challenging, particularly in ECM-like hydrogels made from a single polymer. Herein, we report the design of microstructured alginate hydrogels for injectable cell delivery and show their ability to orchestrate morphogenesis via cellular contact guidance in 3D. Alginate was grafted with hydrophobic cyclooctyne groups (ALG-K), yielding amphiphilic derivatives with self-associative potential and ionic crosslinking ability. This allowed the formation of microstructured ALG-K hydrogels, triggered by the spontaneous segregation between hydrophobic/hydrophilic regions of the polymer that generated 3D networks with stiffer microdomains within a softer lattice. The azide-reactivity of cyclooctynes also allowed ALG-K functionalization with bioactive peptides via cytocompatible strain-promoted azide-alkyne cycloaddition (SPAAC). Hydrogel-embedded mesenchymal stem cells (MSCs) were able to integrate spatial information and to mechano-sense the 3D topography, which regulated cell shape and stress fiber organization. MSCs clusters initially formed on microstructured regions could then act as seeds for neo-tissue formation, inducing cells to produce their own ECM and self-organize into multicellular structures throughout the hydrogel. By combining 3D topography, click functionalization, and injectability, using a single polymer, ALG-K hydrogels provide a unique cell delivery platform for tissue regeneration.

摘要

细胞外基质(ECM)的拓扑结构是细胞行为的主要生物物理调节因子。虽然这激发了具有细胞指导作用的生物材料的设计,但在真实的三维环境中向细胞呈现拓扑线索的能力仍然具有挑战性,尤其是在由单一聚合物制成的类ECM水凝胶中。在此,我们报告了用于可注射细胞递送的微结构藻酸盐水凝胶的设计,并展示了它们在三维空间中通过细胞接触引导来协调形态发生的能力。藻酸盐接枝了疏水性环辛炔基团(ALG-K),产生了具有自缔合潜力和离子交联能力的两亲性衍生物。这使得微结构ALG-K水凝胶得以形成,其由聚合物疏水/亲水区域之间的自发分离触发,形成了在较软晶格内具有更硬微区的三维网络。环辛炔的叠氮反应性还允许通过细胞相容性的应变促进叠氮-炔环加成反应(SPAAC)将ALG-K与生物活性肽功能化。嵌入水凝胶的间充质干细胞(MSCs)能够整合空间信息并机械感知三维拓扑结构,从而调节细胞形状和应力纤维组织。最初在微结构区域形成的MSCs簇随后可作为新组织形成的种子,诱导细胞产生自身的ECM,并在整个水凝胶中自组织成多细胞结构。通过结合三维拓扑结构、点击功能化和可注射性,使用单一聚合物,ALG-K水凝胶为组织再生提供了一个独特的细胞递送平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b9f/10034521/858a5f1fbaff/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验