Suppr超能文献

哮喘患者个体结局的预测。

Prediction of individual outcomes for asthma sufferers.

机构信息

Mayo Clinic, Rochester, MN, USA.

Geisinger Health System, Danville, PA, USA.

出版信息

Biostatistics. 2018 Oct 1;19(4):579-593. doi: 10.1093/biostatistics/kxx055.

Abstract

We consider the problem of individual-specific medication level recommendation (initiation, removal, increase, or decrease) for asthma sufferers. Asthma is one of the most common chronic diseases in both adults and children, affecting 8% of the US population and costing $37-63 billion/year in the United States of America. Asthma is a complex disease, whose symptoms may wax and wane, making it difficult for clinicians to predict outcomes and prognosis. Improved ability to predict prognosis can inform decision making and may promote conversations between clinician and provider around optimizing medication therapy. Data from the US Medical Expenditure Panel Survey (MEPS) years 2000-2010 were used to fit a longitudinal model for a multivariate response of adverse events (Emergency Department or in-patient visits, excessive rescue inhaler use, and oral steroid use). To reduce bias in the estimation of medication effects, medication level was treated as a latent process which was restricted to be consistent with prescription refill data. This approach is demonstrated to be effective in the MEPS cohort via predictions on a validation hold out set and a synthetic data simulation study. This framework can be easily generalized to medication decisions for other conditions as well.

摘要

我们考虑为哮喘患者提供个体化药物剂量建议(起始、停用、增加或减少)的问题。哮喘是成人和儿童中最常见的慢性疾病之一,影响美国 8%的人口,每年在美国造成 370 亿至 630 亿美元的医疗费用。哮喘是一种复杂的疾病,其症状可能会时好时坏,这使得临床医生难以预测结果和预后。提高预测预后的能力可以为决策提供信息,并可能促进临床医生和提供者之间就优化药物治疗进行对话。使用美国医疗支出面板调查(MEPS)2000-2010 年的数据来拟合一个用于不良事件(急诊或住院就诊、过度使用急救吸入器和口服类固醇)多变量反应的纵向模型。为了减少药物效应估计中的偏差,将药物剂量视为一个潜在的过程,该过程被限制为与处方补充数据一致。通过对验证保留数据集和综合数据模拟研究的预测,证明了该方法在 MEPS 队列中是有效的。这种框架也可以很容易地推广到其他疾病的药物决策中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验