Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada.
Executive Director of Cold Regions and Water Initiatives, Wilfred Laurier University.
Environ Toxicol Pharmacol. 2017 Dec;56:366-374. doi: 10.1016/j.etap.2017.10.012. Epub 2017 Oct 31.
An overarching goal of environmental genomics is to leverage sensitive suites of markers that are robust and reliable to assess biological responses in a range of species inhabiting variable environments. The objective of this study was to identify core groups of transcripts and molecular signaling pathways that respond to 17alpha-ethylinestadiol (EE2), a ubiquitous estrogenic contaminant, using transcriptome datasets generated from six independent laboratories. We sought to determine which biomarkers and gene networks were those most robust and reliably detected in multiple laboratories. Six laboratories conducted microarray analysis in pieces of the same liver from male fathead minnows exposed to ∼15ng/L EE2 for 96h. There were common transcriptional networks identified in every dataset. These included down-regulation of gene networks associated with blood clotting, complement activation, triglyceride storage, and xenobiotic metabolism. Noteworthy was that more than ∼85% of the gene networks were suppressed by EE2. Leveraging both these data and those mined from the Comparative Toxicogenomics Database (CTD), we narrowed in on an EE2-responsive transcriptional network. All transcripts in this network responded ∼±5-fold or more to EE2, increasing reliability of detection. This network included estrogen receptor alpha, transferrin, myeloid cell leukemia 1, insulin like growth factor 1, insulin like growth factor binding protein 2, and methionine adenosyltransferase 2A. This estrogen-responsive interactome has the advantage over single markers (e.g. vitellogenin) in that these entities are directly connected to each other based upon evidence of expression regulation and protein binding. Thus, it represents an interacting functional suite of estrogenic markers. Vitellogenin, the gold standard for estrogenic exposures, can show high individual variability in its response to estrogens, and the use of a multi-gene approach for estrogenic chemicals is expected to improve sensitivity. In our case, the coefficient of variation was significantly lowered by the gene network (∼67%) compared to Vtg alone, supporting the use of this transcriptional network as a sensitive alternative for detecting estrogenic effluents and chemicals. We propose that screening chemicals for estrogenicity using interacting genes within a defined expression network will improve sensitivity, accuracy, and reduce the number of animals required for endocrine disruption assessments.
环境基因组学的一个总体目标是利用敏感的标志物组合,这些标志物具有稳健和可靠的特点,可用于评估栖息在各种环境中的多种物种的生物反应。本研究的目的是确定一组核心转录本和分子信号通路,这些转录本和分子信号通路对 17α-乙基雌二醇(EE2)有反应,EE2 是一种普遍存在的雌激素污染物,使用来自六个独立实验室生成的转录组数据集。我们试图确定哪些生物标志物和基因网络在多个实验室中最稳健和可靠地被检测到。六个实验室在雄性黑头呆鱼的同一肝脏组织中进行了微阵列分析,这些鱼暴露在约 15ng/L 的 EE2 中 96 小时。在每个数据集都确定了共同的转录网络。这些网络包括与血液凝结、补体激活、甘油三酯储存和异生物质代谢相关的基因网络下调。值得注意的是,超过约 85%的基因网络被 EE2 抑制。利用这两个数据集和从比较毒理学基因组数据库(CTD)挖掘的数据,我们将重点放在 EE2 反应性转录网络上。这个网络中的所有转录本对 EE2 的反应约为±5 倍或更多,提高了检测的可靠性。这个网络包括雌激素受体α、转铁蛋白、髓样细胞白血病 1、胰岛素样生长因子 1、胰岛素样生长因子结合蛋白 2 和蛋氨酸腺苷转移酶 2A。与单个标志物(如卵黄蛋白原)相比,这个雌激素反应的相互作用网络具有优势,因为这些实体基于表达调控和蛋白结合的证据,彼此之间直接相连。因此,它代表了一个具有交互功能的雌激素标志物套件。卵黄蛋白原是雌激素暴露的金标准,其对雌激素的反应可能具有很高的个体变异性,而使用多基因方法来检测雌激素化学品预计将提高敏感性。在我们的案例中,与单独的 Vtg 相比,基因网络显著降低了变异性(约 67%),支持使用这个转录网络作为检测雌激素流出物和化学品的敏感替代方法。我们提出,使用定义表达网络内的相互作用基因筛选化学物质的雌激素活性,将提高敏感性、准确性,并减少内分泌干扰评估所需的动物数量。