Leiter E H, Chapman H D, Coleman D L
Jackson Laboratory, Bar Harbor, Maine 04609.
Endocrinology. 1989 Feb;124(2):912-22. doi: 10.1210/endo-124-2-912.
Steroid sulfurylation represents a potential mechanism for controlling the level of active steroids within a tissue. We have elucidated an inbred strain background-dependent interaction between the diabetes (db) mutation and steroid sulfotransferase (ST) enzymes, potentially modulating the level of active steroid hormones or their precursors in the liver. Gonadectomized mutants were analyzed to correlate how strain- and gender-dependent variation in ST activities interacted with db to achieve diabetogenesis. Both sexes on the C57BL/KsChp (BKs) background developed severe early-onset hyperglycemia, and gonadectomy failed to prevent diabetes. In contrast, C3HeB/FeChp (C3HeB)-db/db males, but not females, were diabetes susceptible, and the male susceptibility was completely dependent upon endogenous testes-derived testosterone. The female resistance, in turn, was dependent upon ovarian sex steroids. The differential requirements of BKs- and C3HeB-db/db males and females for gonadal sex steroids could be explained on the basis of the differential strength of the interaction between the db mutation and hepatic ST activities. Hepatic ST from normal adult females sulfurylated dehydroepiandrosterone (DHEA), whereas this activity disappeared in cytosols of normal adult males by 8 weeks of age. This sexually dimorphic inability to sulfurylate (pre)androgens was controlled by testosterone. Diabetogenic susceptibility in BKs mutant mice of both sexes was associated with marked depression of preandrogen/androgen sulfurylation [female mutants exhibiting at least a 5-fold reduced DHEA sulfurylation at a near-physiological concentration (0.2 microM)]. This reduced preandrogen/androgen sulfurylation occurred concomitant with a 10-fold acceleration of estrone (E1) sulfurylation at a limiting (0.2 microM) concentration, essentially producing a hyperandrogenized hepatic tissue state. These extreme shifts in ST substrate preferences were not observed in the diabetes-resistant C3HeB-db/db females. Kinetic analysis of semipurified hepatic ST from BKs-db/db females showed a 10-fold decrease in Km for E1 (apparent Km = 0.9 microM in mutants vs. 9.0 microM in normals). Whereas the Km for DHEA did not differ from the control value, hepatic ST from BKs-db/db females showed a 10-fold decreased maximal velocity for DHEA sulfurylation (1230 vs. 12750 pmol/mg.h in control preparations). The antihyperglycemic effects of dietary E1 therapy were associated with enhanced androgen sulfurylation in BKs-db/db females and restoration of androgen sulfurylation in BKs-db/db males.(ABSTRACT TRUNCATED AT 400 WORDS)
类固醇硫酸化是控制组织内活性类固醇水平的一种潜在机制。我们已经阐明了糖尿病(db)突变与类固醇硫酸转移酶(ST)酶之间存在近交系背景依赖性相互作用,这可能会调节肝脏中活性类固醇激素或其前体的水平。对去性腺突变体进行分析,以关联ST活性的品系和性别依赖性变异如何与db相互作用导致糖尿病发生。C57BL/KsChp(BKs)背景下的雌雄两性均出现严重的早发性高血糖,去性腺并不能预防糖尿病。相比之下,C3HeB/FeChp(C3HeB)-db/db雄性小鼠(而非雌性)易患糖尿病,且雄性易感性完全依赖于内源性睾丸来源的睾酮。而雌性的抗性则依赖于卵巢性类固醇。BKs和C3HeB-db/db雄性和雌性对性腺性类固醇的不同需求可以基于db突变与肝脏ST活性之间相互作用的不同强度来解释。正常成年雌性肝脏ST可将脱氢表雄酮(DHEA)硫酸化,而正常成年雄性细胞溶质中的这种活性在8周龄时消失。这种硫酸化(前)雄激素的性别二态性无能受睾酮控制。BKs突变小鼠两性的糖尿病易感性与前雄激素/雄激素硫酸化的显著降低有关[雌性突变体在接近生理浓度(0.2 microM)时DHEA硫酸化至少降低5倍]。这种前雄激素/雄激素硫酸化的降低与在极限浓度(0.2 microM)时雌酮(E1)硫酸化加速10倍同时发生,基本上产生了一种雄激素化过度的肝脏组织状态。在抗糖尿病的C3HeB-db/db雌性小鼠中未观察到ST底物偏好的这些极端变化。对BKs-db/db雌性小鼠半纯化肝脏ST的动力学分析显示,其对E1的Km降低了10倍(突变体的表观Km = 0.9 microM,正常小鼠为9.0 microM)。虽然DHEA的Km与对照值无差异,但BKs-db/db雌性小鼠肝脏ST对DHEA硫酸化的最大速度降低了10倍(对照制剂中为1230 vs. 12750 pmol/mg·h)。饮食E1治疗的抗高血糖作用与BKs-db/db雌性小鼠雄激素硫酸化增强以及BKs-db/db雄性小鼠雄激素硫酸化恢复有关。(摘要截断于400字)