Suppr超能文献

sPAGM:通过整合基因和 miRNA 表达稳健的功能特征识别来推断亚通路活性,用于黑色素瘤预后。

sPAGM: inferring subpathway activity by integrating gene and miRNA expression-robust functional signature identification for melanoma prognoses.

机构信息

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.

出版信息

Sci Rep. 2017 Nov 10;7(1):15322. doi: 10.1038/s41598-017-15631-y.

Abstract

MicroRNAs (miRNAs) regulate biological pathways by inhibiting gene expression. However, most current analytical methods fail to consider miRNAs, when inferring functional or pathway activities. In this study, we developed a model called sPAGM to infer subpathway activities by integrating gene and miRNA expressions. In this model, we reconstructed subpathway graphs by embedding miRNA components, and characterized subpathway activity (sPA) scores by simultaneously considering the expression levels of miRNAs and genes. The results showed that the sPA scores could distinguish different samples across tumor types, as well as samples between tumor and normal conditions. Moreover, the sPAGM model displayed more specificities than the entire pathway-based analyses. This model was applied to melanoma tumors to perform a prognosis analysis, which identified a robust 55-subpathway signature. By using The Cancer Genome Atlas and independently verified data sets, the subpathway-based signature significantly predicted the patients' prognoses, which were independent of clinical variables. In the prognostic performance comparison, the sPAGM model was superior to the gene-only and miRNA-only methods. Finally, we dissected the functional roles and interactions of components within the subpathway signature. Taken together, the sPAGM model provided a framework for inferring subpathway activities and identifying functional signatures for clinical applications.

摘要

微小 RNA(miRNAs)通过抑制基因表达来调节生物途径。然而,当推断功能或途径活性时,大多数当前的分析方法都无法考虑 miRNAs。在这项研究中,我们开发了一种称为 sPAGM 的模型,通过整合基因和 miRNA 表达来推断亚途径活性。在这个模型中,我们通过嵌入 miRNA 成分来重建亚途径图,并通过同时考虑 miRNA 和基因的表达水平来描述亚途径活性(sPA)评分。结果表明,sPA 评分可以区分不同肿瘤类型的样本,以及肿瘤和正常条件之间的样本。此外,sPAGM 模型比基于整个途径的分析具有更高的特异性。该模型应用于黑色素瘤肿瘤进行预后分析,确定了一个稳健的 55 个亚途径特征。通过使用癌症基因组图谱和独立验证的数据集,基于亚途径的特征显著预测了患者的预后,这与临床变量无关。在预后性能比较中,sPAGM 模型优于仅基于基因和仅基于 miRNA 的方法。最后,我们剖析了亚途径特征内组件的功能作用和相互作用。总之,sPAGM 模型为推断亚途径活性和识别临床应用的功能特征提供了一个框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46e0/5681640/9af827fa7529/41598_2017_15631_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验