Univ. Grenoble Alpes, LiPhy, 140 Rue de la Physique, 38402, Saint-Martin-d'Hères, France.
Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042, Grenoble cedex 9, France.
Sci Rep. 2017 Nov 10;7(1):15339. doi: 10.1038/s41598-017-15582-4.
We compared the effect of cholesterol at different concentration on the phase behaviour of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) multilamellar vesicles. We used pressure perturbation differential scanning calorimetry (PPC) that studies a system on the whole by giving access to relevant thermodynamic quantities, and elastic incoherent neutron scattering (EINS) that probes local motions of a system at the atomic level by allowing extraction of dynamical parameters. PPC revealed that the volume expansion coefficient of DMPC and DMPC/Cholesterol samples with 13 and 25 mol% cholesterol is a linear function of the heat capacity measured by differential scanning calorimetry. Neutron backscattering spectroscopy showed that the mean square displacements of H atoms do exhibit an increase with temperature and a decrease under increasing pressure. Cholesterol added at concentrations of 25 and 50 mol% led to suppression of the main phase transition. Taking advantage of these results, the present study aims (i) to show that calorimetry and EINS using the Bicout and Zaccai model equally permit to get access to thermodynamic quantities characterizing pure DMPC and DMPC/cholesterol mixtures, thus directly confirming the theoretical method, and (ii) to validate our approach as function of temperature and of pressure, as both are equally important and complementary thermodynamic variables.
我们比较了不同浓度的胆固醇对 1,2-二肉豆蔻酰-sn-甘油-3-磷酸胆碱(DMPC)多层层状囊泡相行为的影响。我们使用压力微扰差示扫描量热法(PPC),通过获取相关热力学量来研究整个系统,以及弹性非相干中子散射(EINS),通过允许提取动力学参数来探测系统在原子水平上的局部运动。PPC 表明,DMPC 和胆固醇含量为 13 和 25 mol%的 DMPC/胆固醇样品的体积膨胀系数是通过差示扫描量热法测量的热容的线性函数。中子背散射光谱表明,H 原子的均方位移确实随温度升高而增加,随压力升高而减小。添加浓度为 25 和 50 mol%的胆固醇会抑制主相变。利用这些结果,本研究旨在(i)表明使用 Bicout 和 Zaccai 模型的量热法和 EINS 同样可以获得表征纯 DMPC 和 DMPC/胆固醇混合物的热力学量,从而直接证实理论方法,(ii)验证我们的方法作为温度和压力的函数,因为它们都是同等重要和互补的热力学变量。