Suppr超能文献

β地中海贫血和镰状细胞贫血的基因添加策略

Gene Addition Strategies for β-Thalassemia and Sickle Cell Anemia.

作者信息

Dong Alisa C, Rivella Stefano

机构信息

Division of Hematology-Oncology, Department of Pediatrics, Weill Cornell Medical College, 515 E. 71st St., Room S-709, New York, NY, 10021, USA.

Division of Hematology-Oncology, Department of Pediatrics, Weill Cornell Medical College, 515 E. 71st St., S702, Box 284, New York, NY, 10021, USA.

出版信息

Adv Exp Med Biol. 2017;1013:155-176. doi: 10.1007/978-1-4939-7299-9_6.

Abstract

Beta-thalassemia and sickle cell anemia are two of the most common diseases related to the hemoglobin protein. In these diseases, the beta-globin gene is mutated, causing severe anemia and ineffective erythropoiesis. Patients can additionally present with a number of life-threatening co-morbidities, such as stroke or spontaneous fractures. Current treatment involves transfusion and iron chelation; allogeneic bone marrow transplant is the only curative option, but is limited by the availability of matching donors and graft-versus-host disease. As these two diseases are monogenic diseases, they make an attractive setting for gene therapy. Gene therapy aims to correct the mutated beta-globin gene or add back a functional copy of beta- or gamma-globin. Initial gene therapy work was done with oncoretroviral vectors, but has since shifted to lentiviral vectors. Currently, there are a few clinical trials underway to test the curative potential of some of these lentiviral vectors. This review will highlight the work done thus far, and present the challenges still facing gene therapy, such as genome toxicity concerns and achieving sufficient transgene expression to cure those with the most severe forms of thalassemia.

摘要

β地中海贫血和镰状细胞贫血是两种与血红蛋白蛋白相关的最常见疾病。在这些疾病中,β珠蛋白基因发生突变,导致严重贫血和无效造血。患者还可能出现一些危及生命的合并症,如中风或自发性骨折。目前的治疗方法包括输血和铁螯合;异基因骨髓移植是唯一的治愈选择,但受到匹配供体的可用性和移植物抗宿主病的限制。由于这两种疾病是单基因疾病,它们成为基因治疗的一个有吸引力的研究对象。基因治疗旨在纠正突变的β珠蛋白基因或重新引入β或γ珠蛋白的功能性拷贝。最初的基因治疗工作是使用逆转录病毒载体进行的,但此后已转向慢病毒载体。目前,有一些临床试验正在进行,以测试其中一些慢病毒载体的治疗潜力。本综述将重点介绍迄今为止所做的工作,并阐述基因治疗仍然面临的挑战,如基因组毒性问题以及实现足够的转基因表达以治愈最严重形式的地中海贫血患者。

相似文献

1
Gene Addition Strategies for β-Thalassemia and Sickle Cell Anemia.
Adv Exp Med Biol. 2017;1013:155-176. doi: 10.1007/978-1-4939-7299-9_6.
2
A New Era for Hemoglobinopathies: More Than One Curative Option.
Curr Gene Ther. 2017;17(5):364-378. doi: 10.2174/1566523218666180119123655.
3
Gene Therapy for β-Hemoglobinopathies.
Mol Ther. 2017 May 3;25(5):1142-1154. doi: 10.1016/j.ymthe.2017.03.024. Epub 2017 Apr 1.
4
Hemoglobin disorders: lentiviral gene therapy in the starting blocks to enter clinical practice.
Exp Hematol. 2018 Aug;64:12-32. doi: 10.1016/j.exphem.2018.05.004. Epub 2018 May 26.
5
Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies.
Blood. 2019 Oct 10;134(15):1203-1213. doi: 10.1182/blood.2019000949.
7
Gene Therapy of the β-Hemoglobinopathies by Lentiviral Transfer of the β(A(T87Q))-Globin Gene.
Hum Gene Ther. 2016 Feb;27(2):148-65. doi: 10.1089/hum.2016.007.
8
Genetic therapy for beta-thalassemia: from the bench to the bedside.
Hematology Am Soc Hematol Educ Program. 2010;2010:445-50. doi: 10.1182/asheducation-2010.1.445.
9
Gene Therapy for beta-thalassemia.
Hematology Am Soc Hematol Educ Program. 2005:45-50. doi: 10.1182/asheducation-2005.1.45.
10
Gene Therapy for β-Hemoglobinopathies: From Discovery to Clinical Trials.
Viruses. 2023 Mar 9;15(3):713. doi: 10.3390/v15030713.

引用本文的文献

1
A Case of Sickle Cell Beta Thalassemia and Recurrent Septicemia.
Cureus. 2025 Jul 8;17(7):e87521. doi: 10.7759/cureus.87521. eCollection 2025 Jul.
2
Drug product attributes predict clinical efficacy in betibeglogene autotemcel gene therapy for β-thalassemia.
Mol Ther Methods Clin Dev. 2023 Nov 10;31:101155. doi: 10.1016/j.omtm.2023.101155. eCollection 2023 Dec 14.
3
Genetics Matters: Voyaging from the Past into the Future of Humanity and Sustainability.
Int J Mol Sci. 2022 Apr 2;23(7):3976. doi: 10.3390/ijms23073976.
4
Genomic Engineering in Human Hematopoietic Stem Cells: Hype or Hope?
Front Genome Ed. 2021 Jan 22;2:615619. doi: 10.3389/fgeed.2020.615619. eCollection 2020.
5
Genome-based therapeutic interventions for β-type hemoglobinopathies.
Hum Genomics. 2021 Jun 5;15(1):32. doi: 10.1186/s40246-021-00329-0.
7
Biological Products: Cellular Therapy and FDA Approved Products.
Stem Cell Rev Rep. 2019 Apr;15(2):166-175. doi: 10.1007/s12015-018-9866-1.

本文引用的文献

2
An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level.
Science. 2013 Oct 11;342(6155):253-7. doi: 10.1126/science.1242088.
3
Deferasirox for the treatment of iron overload in non-transfusion-dependent thalassemia.
Expert Rev Hematol. 2013 Oct;6(5):495-509. doi: 10.1586/17474086.2013.827411. Epub 2013 Oct 2.
4
β-globin gene transfer to human bone marrow for sickle cell disease.
J Clin Invest. 2013 Jul 1;123(8):3317-30. doi: 10.1172/JCI67930.
6
Non-transfusion-dependent thalassemias.
Haematologica. 2013 Jun;98(6):833-44. doi: 10.3324/haematol.2012.066845.
7
Reducing TMPRSS6 ameliorates hemochromatosis and β-thalassemia in mice.
J Clin Invest. 2013 Apr;123(4):1531-41. doi: 10.1172/JCI66969. Epub 2013 Mar 25.
8
Gene therapy for hemoglobinopathies: progress and challenges.
Transl Res. 2013 Apr;161(4):293-306. doi: 10.1016/j.trsl.2012.12.011. Epub 2013 Jan 19.
9
10
Development of gene therapy for thalassemia.
Cold Spring Harb Perspect Med. 2012 Nov 1;2(11):a011833. doi: 10.1101/cshperspect.a011833.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验