Suppr超能文献

界面色氨酸在膜蛋白能量学中的位置特异性贡献。

Position-Specific contribution of interface tryptophans on membrane protein energetics.

机构信息

Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.

Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.

出版信息

Biochim Biophys Acta Biomembr. 2018 Feb;1860(2):451-457. doi: 10.1016/j.bbamem.2017.11.003. Epub 2017 Nov 9.

Abstract

Interface tryptophans are key residues that facilitate the folding and stability of membrane proteins. Escherichia coli OmpX possesses two unique interface tryptophans, namely Trp76, which is present at the interface and is solvent-exposed, and Trp140, which is relatively more lipid solvated than Trp76 in symmetric lipid membranes. Here, we address the requirement for tryptophan and the consequences of aromatic amino acid substitutions on the folding and stability of OmpX. Using spectroscopic measurements of OmpX-Trp/Tyr/Phe mutants, we show that the specific mutation W76→Y allows barrel assembly >1.5-fold faster than native OmpX, and increases stability by ~0.4kcalmol. In contrast, mutating W140→F/Y lowers OmpX thermodynamic stability by ~0.4kcalmol, without affecting the folding kinetics. We conclude that the stabilizing effect of tryptophan at the membrane interface can be position-and local environment-specific. We propose that the thermodynamic contributions for interface residues be interpreted with caution.

摘要

界面色氨酸是促进膜蛋白折叠和稳定性的关键残基。大肠杆菌 OmpX 具有两个独特的界面色氨酸,即位于界面上且暴露于溶剂中的 Trp76,以及在对称脂质膜中比 Trp76 更脂溶性的 Trp140。在这里,我们研究了色氨酸的需求以及芳香族氨基酸取代对 OmpX 折叠和稳定性的影响。通过对 OmpX-Trp/Tyr/Phe 突变体的光谱测量,我们表明特定的突变 W76→Y 允许桶组装速度比天然 OmpX 快 1.5 倍以上,并增加了约 0.4kcalmol 的稳定性。相比之下,将 W140→F/Y 突变会降低 OmpX 的热力学稳定性约 0.4kcalmol,而不影响折叠动力学。我们得出结论,色氨酸在膜界面上的稳定作用可能具有位置和局部环境特异性。我们建议谨慎解释界面残基的热力学贡献。

相似文献

1
Position-Specific contribution of interface tryptophans on membrane protein energetics.
Biochim Biophys Acta Biomembr. 2018 Feb;1860(2):451-457. doi: 10.1016/j.bbamem.2017.11.003. Epub 2017 Nov 9.
4
Energetics of side-chain partitioning of β-signal residues in unassisted folding of a transmembrane β-barrel protein.
J Biol Chem. 2017 Jul 21;292(29):12351-12365. doi: 10.1074/jbc.M117.789446. Epub 2017 Jun 7.
5
Monitoring Backbone Hydrogen-Bond Formation in β-Barrel Membrane Protein Folding.
Angew Chem Int Ed Engl. 2016 May 10;55(20):5952-5. doi: 10.1002/anie.201509910. Epub 2016 Apr 9.
6
Methionine mutations of outer membrane protein X influence structural stability and beta-barrel unfolding.
PLoS One. 2013 Nov 12;8(11):e79351. doi: 10.1371/journal.pone.0079351. eCollection 2013.
8
Reversible folding energetics of Yersinia Ail barrel reveals a hyperfluorescent intermediate.
Biochim Biophys Acta Biomembr. 2020 Feb 1;1862(2):183097. doi: 10.1016/j.bbamem.2019.183097. Epub 2019 Oct 28.
9
Two-State Folding of the Outer Membrane Protein X into a Lipid Bilayer Membrane.
Angew Chem Int Ed Engl. 2019 Feb 25;58(9):2665-2669. doi: 10.1002/anie.201812321. Epub 2019 Jan 29.
10
An evolutionarily conserved glycine-tyrosine motif forms a folding core in outer membrane proteins.
PLoS One. 2017 Aug 3;12(8):e0182016. doi: 10.1371/journal.pone.0182016. eCollection 2017.

引用本文的文献

2
The Role of Extracellular Loops in the Folding of Outer Membrane Protein X (OmpX) of .
Front Mol Biosci. 2022 Jul 14;9:918480. doi: 10.3389/fmolb.2022.918480. eCollection 2022.
3
The Thermodynamic Stability of Membrane Proteins in Micelles and Lipid Bilayers Investigated with the Ferrichrom Receptor FhuA.
J Membr Biol. 2022 Oct;255(4-5):485-502. doi: 10.1007/s00232-022-00238-w. Epub 2022 May 13.
4
Engineering a Hyperstable Outer Membrane Protein Ail Using Thermodynamic Design.
J Am Chem Soc. 2022 Feb 2;144(4):1545-1555. doi: 10.1021/jacs.1c05964. Epub 2022 Jan 21.
5
Reversible folding energetics of Yersinia Ail barrel reveals a hyperfluorescent intermediate.
Biochim Biophys Acta Biomembr. 2020 Feb 1;1862(2):183097. doi: 10.1016/j.bbamem.2019.183097. Epub 2019 Oct 28.
6
Tryptophan usage by Helicobacter pylori differs among strains.
Sci Rep. 2019 Jan 29;9(1):873. doi: 10.1038/s41598-018-37263-6.
7
Hydrophobic Mismatch Modulates Stability and Plasticity of Human Mitochondrial VDAC2.
Biophys J. 2018 Dec 18;115(12):2386-2394. doi: 10.1016/j.bpj.2018.11.001. Epub 2018 Nov 7.
8
Folding Determinants of Transmembrane β-Barrels Using Engineered OMP Chimeras.
Biochemistry. 2018 Apr 3;57(13):1987-1996. doi: 10.1021/acs.biochem.8b00012. Epub 2018 Mar 20.

本文引用的文献

1
Influence of Protein Scaffold on Side-Chain Transfer Free Energies.
Biophys J. 2017 Aug 8;113(3):597-604. doi: 10.1016/j.bpj.2017.06.032.
2
Energetics of side-chain partitioning of β-signal residues in unassisted folding of a transmembrane β-barrel protein.
J Biol Chem. 2017 Jul 21;292(29):12351-12365. doi: 10.1074/jbc.M117.789446. Epub 2017 Jun 7.
3
Evolutionary trend toward kinetic stability in the folding trajectory of RNases H.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13045-13050. doi: 10.1073/pnas.1611781113. Epub 2016 Oct 31.
4
Control of human VDAC-2 scaffold dynamics by interfacial tryptophans is position specific.
Biochim Biophys Acta. 2016 Dec;1858(12):2993-3004. doi: 10.1016/j.bbamem.2016.09.011. Epub 2016 Sep 15.
5
Aromatic Side Chain Water-to-Lipid Transfer Free Energies Show a Depth Dependence across the Membrane Normal.
J Am Chem Soc. 2016 Jun 29;138(25):7946-50. doi: 10.1021/jacs.6b03460. Epub 2016 Jun 15.
6
Implications of aromatic-aromatic interactions: From protein structures to peptide models.
Protein Sci. 2015 Dec;24(12):1920-33. doi: 10.1002/pro.2814. Epub 2015 Oct 7.
9
Asymmetric contribution of aromatic interactions stems from spatial positioning of the interacting aryl pairs in β-hairpins.
Chembiochem. 2014 Nov 3;15(16):2357-60. doi: 10.1002/cbic.201402340. Epub 2014 Sep 5.
10
Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA.
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5878-83. doi: 10.1073/pnas.1322473111. Epub 2014 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验