Suppr超能文献

用于联合稀疏正则化基于SPIRiT的并行磁共振成像重建的高效算子分裂算法

Efficient operator splitting algorithm for joint sparsity-regularized SPIRiT-based parallel MR imaging reconstruction.

作者信息

Duan Jizhong, Liu Yu, Jing Peiguang

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China.

School of Microelectronics, Tianjin University, Tianjin 300072, China.

出版信息

Magn Reson Imaging. 2018 Feb;46:81-89. doi: 10.1016/j.mri.2017.10.013. Epub 2017 Nov 8.

Abstract

Self-consistent parallel imaging (SPIRiT) is an auto-calibrating model for the reconstruction of parallel magnetic resonance imaging, which can be formulated as a regularized SPIRiT problem. The Projection Over Convex Sets (POCS) method was used to solve the formulated regularized SPIRiT problem. However, the quality of the reconstructed image still needs to be improved. Though methods such as NonLinear Conjugate Gradients (NLCG) can achieve higher spatial resolution, these methods always demand very complex computation and converge slowly. In this paper, we propose a new algorithm to solve the formulated Cartesian SPIRiT problem with the JTV and JL1 regularization terms. The proposed algorithm uses the operator splitting (OS) technique to decompose the problem into a gradient problem and a denoising problem with two regularization terms, which is solved by our proposed split Bregman based denoising algorithm, and adopts the Barzilai and Borwein method to update step size. Simulation experiments on two in vivo data sets demonstrate that the proposed algorithm is 1.3 times faster than ADMM for datasets with 8 channels. Especially, our proposal is 2 times faster than ADMM for the dataset with 32 channels.

摘要

自一致性并行成像(SPIRiT)是一种用于并行磁共振成像重建的自动校准模型,它可以被表述为一个正则化的SPIRiT问题。采用凸集投影(POCS)方法来求解所表述的正则化SPIRiT问题。然而,重建图像的质量仍有待提高。尽管诸如非线性共轭梯度(NLCG)等方法可以实现更高的空间分辨率,但这些方法总是需要非常复杂的计算且收敛缓慢。在本文中,我们提出了一种新算法,用于求解带有JTV和JL1正则化项的笛卡尔SPIRiT问题。所提出的算法使用算子分裂(OS)技术将问题分解为一个梯度问题和一个带有两个正则化项的去噪问题,该去噪问题通过我们提出的基于分裂Bregman的去噪算法来求解,并采用Barzilai和Borwein方法来更新步长。对两个体内数据集进行的模拟实验表明,对于8通道的数据集,所提出的算法比交替方向乘子法(ADMM)快1.3倍。特别是,对于32通道的数据集,我们的方法比ADMM快2倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验