Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China.
Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China.
Magn Reson Imaging. 2022 May;88:62-75. doi: 10.1016/j.mri.2022.01.012. Epub 2022 Jan 31.
Iterative self-consistent parallel imaging reconstruction (SPIRiT) is an effective self-calibrated reconstruction model for parallel magnetic resonance imaging (PMRI). The joint L1 norm of wavelet or tight frame coefficients and joint total variation (TV) regularization terms are incorporated into the SPIRiT model to improve the reconstruction performance. The simultaneous two-directional low-rankness (STDLR) in k-space data is incorporated into SPIRiT to realize improved reconstruction. Recent methods have exploited the nonlocal self-similarity (NSS) of images by imposing nonlocal low-rankness of similar patches to achieve a superior performance. To fully utilize both the NSS in Magnetic resonance (MR) images and calibration consistency in the k-space domain, we propose a nonlocal low-rank (NLR)-SPIRiT model by incorporating NLR regularization into the SPIRiT model. We apply the weighted nuclear norm (WNN) as a surrogate of the rank and employ the Nash equilibrium (NE) formulation and alternating direction method of multipliers (ADMM) to efficiently solve the NLR-SPIRiT model. The experimental results demonstrate the superior performance of NLR-SPIRiT over the state-of-the-art methods via three objective metrics and visual comparison.
迭代自一致并行成像重建(SPIRiT)是一种有效的并行磁共振成像(PMRI)自校准重建模型。将小波或紧框架系数的联合 L1 范数和联合全变差(TV)正则化项合并到 SPIRiT 模型中,以提高重建性能。将同时双向低秩性(STDLR)引入到 k 空间数据中,以实现改进的重建。最近的方法通过对相似补丁施加非局部低秩性来利用图像的非局部自相似性(NSS),从而实现了更好的性能。为了充分利用磁共振(MR)图像中的 NSS 和 k 空间域中的校准一致性,我们通过将 NLR 正则化合并到 SPIRiT 模型中,提出了一种非局部低秩(NLR)-SPIRiT 模型。我们将加权核范数(WNN)用作秩的替代,并采用纳什均衡(NE)公式和交替方向乘子法(ADMM)来有效地求解 NLR-SPIRiT 模型。实验结果通过三个客观指标和视觉比较证明了 NLR-SPIRiT 优于最先进方法的性能。