Sanderson Eleanor, Windmeijer Frank
Department of Economics, University of Bristol, UK.
CMPO and IEU, University of Bristol, UK.
J Econom. 2016 Feb;190(2):212-221. doi: 10.1016/j.jeconom.2015.06.004.
We consider testing for weak instruments in a model with multiple endogenous variables. Unlike Stock and Yogo (2005), who considered a weak instruments problem where the rank of the matrix of reduced form parameters is near zero, here we consider a weak instruments problem of a near rank reduction of one in the matrix of reduced form parameters. For example, in a two-variable model, we consider weak instrument asymptotics of the form [Formula: see text] where [Formula: see text] and [Formula: see text] are the parameters in the two reduced-form equations, [Formula: see text] is a vector of constants and [Formula: see text] is the sample size. We investigate the use of a conditional first-stage [Formula: see text]-statistic along the lines of the proposal by Angrist and Pischke (2009) and show that, unless [Formula: see text], the variance in the denominator of their [Formula: see text]-statistic needs to be adjusted in order to get a correct asymptotic distribution when testing the hypothesis [Formula: see text]. We show that a corrected conditional [Formula: see text]-statistic is equivalent to the Cragg and Donald (1993) minimum eigenvalue rank test statistic, and is informative about the maximum total relative bias of the 2SLS estimator and the Wald tests size distortions. When [Formula: see text] in the two-variable model, or when there are more than two endogenous variables, further information over and above the Cragg-Donald statistic can be obtained about the nature of the weak instrument problem by computing the conditional first-stage [Formula: see text]-statistics.
我们考虑在具有多个内生变量的模型中检验弱工具变量。与斯托克和与约戈(2005年)不同,他们考虑的是简化形式参数矩阵的秩接近于零的弱工具变量问题,这里我们考虑的是简化形式参数矩阵的秩近乎降低一阶的弱工具变量问题。例如,在一个双变量模型中,我们考虑形式为[公式:见原文]的弱工具变量渐近性,其中[公式:见原文]和[公式:见原文]是两个简化形式方程中的参数,[公式:见原文]是常数向量,[公式:见原文]是样本量。我们按照安格里斯特和皮施克(2009年)的提议研究条件第一阶段[公式:见原文]统计量的使用,并表明,除非[公式:见原文],在检验假设[公式:见原文]时,为了得到正确的渐近分布,他们的[公式:见原文]统计量分母中的方差需要进行调整。我们表明,一个修正的条件[公式:见原文]统计量等同于克拉格和唐纳德(1993年)的最小特征值秩检验统计量,并且对于两阶段最小二乘法(2SLS)估计量的最大总相对偏差和沃尔德检验规模扭曲具有信息价值。在双变量模型中当[公式:见原文]时,或者当存在两个以上内生变量时,通过计算条件第一阶段[公式:见原文]统计量,可以获得关于弱工具变量问题本质的、超出克拉格 - 唐纳德统计量的更多信息。