Yang Yihe, Lorincz-Comi Noah, Li Mengxuan, Zhu Xiaofeng
Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106, United States.
Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf250.
Multivariable cis-Mendelian randomization (cis-MVMR) has become an effective approach for identifying therapeutic targets that influence disease susceptibility. However, biases from invalid instruments, such as weak instruments and horizontal pleiotropy, remain unsolved. In this paper, we propose a new method called the cis-Mendelian randomization bias correction estimating equation (cis-MRBEE), which mitigates weak instrument bias by leveraging a local sparse genetic architecture: most variants within a genomic region are associated with a trait through linkage disequilibrium with a few causal variants. Cis-MRBEE identifies causal variants or proxies of exposures via fine-mapping, re-estimates genetic associations using the identified variants, and applies a double-penalized minimization to estimate causal exposures and account for horizontal pleiotropic effects. Simulations showed that in the presence of weak instruments and horizontal pleiotropy, directly adapting standard MVMR methods to cis-MVMR was infeasible, and existing cis-MVMR methods failed to control type I errors. In contrast, cis-MRBEE exhibited robustness to these sources of bias. We applied cis-MRBEE to the ANGPTL3 locus and identified a credible set comprising APOA1, APOC1, and PCSK9 as likely causal proteins for LDL-C, HDL-C, and TG. The subsequent analysis revealed a complex protein regulation network that influenced lipid traits. Furthermore, we used cis-MRBEE to discover that the expressions of CR1 in the basal ganglia, hippocampus, and oligodendrocytes were potentially causal for Alzheimer's disease and its biomarkers, A$\beta $42 and pTau, in cerebrospinal fluid.
多变量顺式孟德尔随机化(cis-MVMR)已成为识别影响疾病易感性的治疗靶点的有效方法。然而,来自无效工具的偏差,如弱工具和水平多效性,仍然没有得到解决。在本文中,我们提出了一种名为顺式孟德尔随机化偏差校正估计方程(cis-MRBEE)的新方法,该方法通过利用局部稀疏遗传结构来减轻弱工具偏差:基因组区域内的大多数变异通过与少数因果变异的连锁不平衡与一个性状相关联。Cis-MRBEE通过精细定位识别暴露的因果变异或代理,使用识别出的变异重新估计遗传关联,并应用双惩罚最小化来估计因果暴露并解释水平多效性效应。模拟表明,在存在弱工具和水平多效性的情况下,直接将标准MVMR方法应用于cis-MVMR是不可行的,现有的cis-MVMR方法无法控制I型错误。相比之下,cis-MRBEE对这些偏差来源表现出稳健性。我们将cis-MRBEE应用于ANGPTL3基因座,确定了一个包含APOA1、APOC1和PCSK9的可信集,作为LDL-C、HDL-C和TG可能的因果蛋白。随后的分析揭示了一个影响脂质性状的复杂蛋白质调控网络。此外,我们使用cis-MRBEE发现基底神经节、海马体和少突胶质细胞中CR1的表达可能是阿尔茨海默病及其生物标志物脑脊液中Aβ42和pTau的病因。