Suppr超能文献

用于小射野和调强放射治疗射束的放射光致发光玻璃剂量计的射野大小校正因子。

Field-size correction factors of a radiophotoluminescent glass dosimeter for small-field and intensity-modulated radiation therapy beams.

作者信息

Hashimoto Shimpei, Fujita Yukio, Katayose Tetsurou, Mizuno Hideyuki, Saitoh Hidetoshi, Karasawa Katsuyuki

机构信息

Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, Japan.

Department of Radiation Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa, Japan.

出版信息

Med Phys. 2018 Jan;45(1):382-390. doi: 10.1002/mp.12665. Epub 2017 Dec 5.

Abstract

PURPOSE

We evaluated the energy responses of a radiophotoluminescent glass dosimeter (RPLD) to variations in small-field and intensity-modulated radiation therapy (IMRT) conditions using experimental measurements and Monte Carlo simulation.

METHODS

Several sizes of the jaw and multileaf collimator fields and various plan-class IMRT-beam measurements were performed using the RPLD and an ionization chamber. The field-size correction factor for the RPLD was determined for 6- and 10-MV x rays. This correction factor, together with the perturbation factor, was also calculated using Monte Carlo simulation with the EGSnrc/egs_chamber user code. In addition, to evaluate the response of the RPLD to clinical-class-specific reference fields, the field-size correction factor for the clinical IMRT plan was measured.

RESULTS

The calculated field-size correction factor ranged from 1.007 to 0.981 (for 6-MV x rays) and from 1.012 to 0.990 (for 10-MV x rays) as the jaw-field size ranged from 1 × 1 cm to 20 × 20 cm . The atomic composition perturbation factor for these jaw fields decreased by 3.2% and 1.9% for the 6- and 10-MV fields, respectively. The density perturbation factor was unity for field sizes ranging from 3 × 3 cm to 20 × 20 cm , whereas that for field sizes ranging from 3 × 3 cm to 1 × 1 cm decreased by 3.2% (for 6-MV x rays) and 4.3% (for 10-MV x rays). The volume-averaging factor rapidly increased for field sizes below 1.6 × 1.6 cm . The results for the MLC fields were similar to those for the jaw fields. For plan-class IMRT beams, the field-size correction and perturbation factors were almost unity. The difference between the doses measured using the RPLD and ionization chamber was within 1.2% for the clinical IMRT plan at the planning-target volume (PTV) region.

CONCLUSIONS

For small fields of size 1.6 × 1.6 cm or less, it was clarified that the volume averaging and density perturbation were the dominant effects responsible for the variation in the RPLD response. Moreover, perturbation correction is required when measuring a field size 1.0 × 1.0 cm or less. Under the IMRT conditions, the difference in the responses of the RPLD between the reference conditions and the PTV region calculated by Monte Carlo simulation did not exceed 0.8%. These results indicate that it is feasible to measure IMRT dosage using an RPLD at the PTV region.

摘要

目的

我们通过实验测量和蒙特卡罗模拟,评估了放射性光致发光玻璃剂量计(RPLD)对小射野和调强放射治疗(IMRT)条件变化的能量响应。

方法

使用RPLD和电离室对几种大小的准直器 jaws 和多叶准直器射野以及各种计划类IMRT射束进行了测量。确定了6兆伏和10兆伏X射线的RPLD射野大小校正因子。还使用带有EGSnrc/egs_chamber用户代码的蒙特卡罗模拟计算了该校正因子以及扰动因子。此外,为了评估RPLD对临床类特定参考射野的响应,测量了临床IMRT计划的射野大小校正因子。

结果

随着准直器 jaws 射野大小从1×1厘米变化到20×20厘米,计算得到的射野大小校正因子范围为1.007至0.981(对于6兆伏X射线)和1.012至0.990(对于10兆伏X射线)。这些准直器 jaws 射野的原子组成扰动因子对于6兆伏和10兆伏射野分别降低了3.2%和1.9%。对于射野大小从3×3厘米到20×20厘米,密度扰动因子为1,而对于射野大小从3×3厘米到1×1厘米,密度扰动因子降低了3.2%(对于6兆伏X射线)和4.3%(对于10兆伏X射线)。对于射野大小小于1.6×1.6厘米,体积平均因子迅速增加。多叶准直器射野的结果与准直器 jaws 射野的结果相似。对于计划类IMRT射束,射野大小校正和扰动因子几乎为1。在计划靶区(PTV)区域,对于临床IMRT计划,使用RPLD和电离室测量的剂量差异在1.2%以内。

结论

对于大小为1.6×1.6厘米或更小的小射野,明确了体积平均和密度扰动是导致RPLD响应变化的主要效应。此外,当测量大小为1.0×1.0厘米或更小的射野时需要进行扰动校正。在IMRT条件下,蒙特卡罗模拟计算的参考条件与PTV区域之间RPLD响应的差异不超过0.8%。这些结果表明在PTV区域使用RPLD测量IMRT剂量是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验