Eccles Institute of Neuroscience and Australian Research Council Centre of Excellence for Integrative Brain Function, John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia.
Eur J Neurosci. 2017 Dec;46(12):2859-2866. doi: 10.1111/ejn.13777. Epub 2017 Dec 8.
Classically, GABA receptors are thought to regulate neuronal excitability via G-protein-coupled inwardly rectifying potassium (GIRK) channels. Recent data, however, indicate that GABA receptors can also activate two-pore domain potassium channels. Here, we investigate which potassium channels are coupled to GABA receptors in rat neocortical layer 5 and hippocampal CA1 pyramidal neurons. Bath application of the non-specific GIRK channel blocker barium (200 μm) abolished outward currents evoked by GABA receptors in CA1 pyramidal, but only partially blocked GABA responses in layer 5 neurons. Layer 5 and CA1 pyramidal neurons also showed differential sensitivity to tertiapin-Q, a specific GIRK channel blocker. Tertiapin-Q partially blocked GABA responses in CA1 pyramidal neurons, but was ineffective in blocking GABA responses in neocortical layer 5 neurons. Consistent with the idea that GABA receptors are coupled to two-pore domain potassium channels, the non-specific blockers quinidine and bupivacaine partially blocked GABA responses in both layer 5 and CA1 neurons. Finally, we show that lowering external pH, as occurs in hypoxia, blocks the component of GABA responses mediated by two-pore domain potassium channels in neocortical layer 5 pyramidal neurons, while at the same time revealing a GIRK channel component. These data indicate that GABA receptors in neocortical layer 5 and hippocampal CA1 pyramidal neurons are coupled to different channels, with this coupling pH dependent on neocortical layer 5 pyramidal neurons. This pH dependency may act to maintain constant levels of GABA inhibition during hypoxia by enhancing GIRK channel function following a reduction in two-pore domain potassium channel activity.
传统上认为,GABA 受体通过 G 蛋白偶联内向整流钾 (GIRK) 通道调节神经元兴奋性。然而,最近的数据表明,GABA 受体也可以激活双孔域钾通道。在这里,我们研究了 GABA 受体在大鼠新皮层第 5 层和海马 CA1 锥体神经元中与哪种钾通道偶联。GIRK 通道非特异性阻断剂钡(200μm)的浴应用消除了 CA1 锥体神经元中 GABA 受体诱发的外向电流,但仅部分阻断了第 5 层神经元中的 GABA 反应。第 5 层和 CA1 锥体神经元对特替哌-Q(一种特异性 GIRK 通道阻断剂)也表现出不同的敏感性。特替哌-Q 部分阻断了 CA1 锥体神经元中的 GABA 反应,但在阻断新皮层第 5 层神经元中的 GABA 反应方面无效。与 GABA 受体与双孔域钾通道偶联的观点一致,非特异性阻断剂奎尼丁和布比卡因部分阻断了第 5 层和 CA1 神经元中的 GABA 反应。最后,我们表明,降低外部 pH(如缺氧时发生的情况)会阻断新皮层第 5 层锥体神经元中由双孔域钾通道介导的 GABA 反应的组成部分,同时揭示 GIRK 通道的组成部分。这些数据表明,新皮层第 5 层和海马 CA1 锥体神经元中的 GABA 受体与不同的通道偶联,这种偶联依赖于新皮层第 5 层锥体神经元的 pH 值。这种 pH 值依赖性可能通过在双孔域钾通道活性降低后增强 GIRK 通道功能来维持缺氧期间 GABA 抑制的恒定水平。