Suppr超能文献

通过过渡路径采样和分子动力学计算揭示的人类磷酸葡萄糖变位酶的机制见解

Mechanistic Insights on Human Phosphoglucomutase Revealed by Transition Path Sampling and Molecular Dynamics Calculations.

作者信息

Brás Natércia F, Fernandes Pedro A, Ramos Maria J, Schwartz Steven D

机构信息

UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.

Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona, 85721, USA.

出版信息

Chemistry. 2018 Feb 6;24(8):1978-1987. doi: 10.1002/chem.201705090. Epub 2018 Jan 4.

Abstract

Human α-phosphoglucomutase 1 (α-PGM) catalyzes the isomerization of glucose-1-phosphate into glucose-6-phosphate (G6P) through two sequential phosphoryl transfer steps with a glucose-1,6-bisphosphate (G16P) intermediate. Given that the release of G6P in the gluconeogenesis raises the glucose output levels, α-PGM represents a tempting pharmacological target for type 2 diabetes. Here, we provide the first theoretical study of the catalytic mechanism of human α-PGM. We performed transition-path sampling simulations to unveil the atomic details of the two catalytic chemical steps, which could be key for developing transition state (TS) analogue molecules with inhibitory properties. Our calculations revealed that both steps proceed through a concerted S 2-like mechanism, with a loose metaphosphate-like TS. Even though experimental data suggests that the two steps are identical, we observed noticeable differences: 1) the transition state ensemble has a well-defined TS region and a late TS for the second step, and 2) larger coordinated protein motions are required to reach the TS of the second step. We have identified key residues (Arg23, Ser117, His118, Lys389), and the Mg ion that contribute in different ways to the reaction coordinate. Accelerated molecular dynamics simulations suggest that the G16P intermediate may reorient without leaving the enzymatic binding pocket, through significant conformational rearrangements of the G16P and of specific loop regions of the human α-PGM.

摘要

人α-磷酸葡萄糖变位酶1(α-PGM)通过两个连续的磷酸基转移步骤,以葡萄糖-1,6-二磷酸(G16P)为中间体,催化葡萄糖-1-磷酸异构化为葡萄糖-6-磷酸(G6P)。鉴于糖异生过程中G6P的释放会提高葡萄糖输出水平,α-PGM成为2型糖尿病颇具吸引力的药理学靶点。在此,我们首次对人α-PGM的催化机制进行了理论研究。我们进行了过渡路径采样模拟,以揭示这两个催化化学步骤的原子细节,这对于开发具有抑制特性的过渡态(TS)类似物分子可能至关重要。我们的计算表明,这两个步骤均通过类似协同S2的机制进行,具有一个松散的类偏磷酸过渡态。尽管实验数据表明这两个步骤是相同的,但我们观察到了明显的差异:1)过渡态系综具有明确的过渡态区域,且第二步的过渡态较靠后;2)达到第二步的过渡态需要更大程度的蛋白质协同运动。我们确定了以不同方式对反应坐标有贡献的关键残基(Arg23、Ser117、His118、Lys389)以及Mg离子。加速分子动力学模拟表明,G16P中间体可能通过G16P和人α-PGM特定环区域的显著构象重排,在不离开酶结合口袋的情况下重新定向。

相似文献

1
Mechanistic Insights on Human Phosphoglucomutase Revealed by Transition Path Sampling and Molecular Dynamics Calculations.
Chemistry. 2018 Feb 6;24(8):1978-1987. doi: 10.1002/chem.201705090. Epub 2018 Jan 4.
2
Catalytic cycling in beta-phosphoglucomutase: a kinetic and structural analysis.
Biochemistry. 2005 Jul 12;44(27):9404-16. doi: 10.1021/bi050558p.
3
α-Fluorophosphonates reveal how a phosphomutase conserves transition state conformation over hexose recognition in its two-step reaction.
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12384-9. doi: 10.1073/pnas.1402850111. Epub 2014 Aug 7.
6
Mechanism-based inactivation of rabbit muscle phosphoglucomutase by nojirimycin 6-phosphate.
Biochemistry. 1988 Sep 20;27(19):7328-32. doi: 10.1021/bi00419a022.
7
The pentacovalent phosphorus intermediate of a phosphoryl transfer reaction.
Science. 2003 Mar 28;299(5615):2067-71. doi: 10.1126/science.1082710. Epub 2003 Mar 13.
8
Pentacoordinated phosphorus revisited by high-level QM/MM calculations.
Proteins. 2010 Aug 15;78(11):2405-11. doi: 10.1002/prot.22758.

引用本文的文献

2
Acute PDE4 Inhibition Induces a Transient Increase in Blood Glucose in Mice.
Int J Mol Sci. 2023 Feb 7;24(4):3260. doi: 10.3390/ijms24043260.
3
Genetic validation of Aspergillus fumigatus phosphoglucomutase as a viable therapeutic target in invasive aspergillosis.
J Biol Chem. 2022 Jun;298(6):102003. doi: 10.1016/j.jbc.2022.102003. Epub 2022 Apr 30.
4
Essential Functional Interplay of the Catalytic Groups in Acid Phosphatase.
ACS Catal. 2022 Mar 18;12(6):3357-3370. doi: 10.1021/acscatal.1c05656. Epub 2022 Feb 28.
7
Structural and dynamical description of the enzymatic reaction of a phosphohexomutase.
Struct Dyn. 2019 Apr 1;6(2):024703. doi: 10.1063/1.5092803. eCollection 2019 Mar.
8
A Hotspot for Disease-Associated Variants of Human PGM1 Is Associated with Impaired Ligand Binding and Loop Dynamics.
Structure. 2018 Oct 2;26(10):1337-1345.e3. doi: 10.1016/j.str.2018.07.005. Epub 2018 Aug 16.

本文引用的文献

1
Catalytic-site design for inverse heavy-enzyme isotope effects in human purine nucleoside phosphorylase.
Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6456-6461. doi: 10.1073/pnas.1704786114. Epub 2017 Jun 5.
2
Asp263 missense variants perturb the active site of human phosphoglucomutase 1.
FEBS J. 2017 Mar;284(6):937-947. doi: 10.1111/febs.14025. Epub 2017 Feb 10.
3
The Catalytic Mechanism of the Marine-Derived Macrocyclase PatGmac.
Chemistry. 2016 Sep 5;22(37):13089-97. doi: 10.1002/chem.201601670. Epub 2016 Jul 8.
4
Leaving Group Ability Observably Affects Transition State Structure in a Single Enzyme Active Site.
J Am Chem Soc. 2016 Jun 15;138(23):7386-94. doi: 10.1021/jacs.6b03156. Epub 2016 Jun 2.
5
Insights into the reaction mechanism of 3-O-sulfotransferase through QM/MM calculations.
Phys Chem Chem Phys. 2016 Apr 28;18(16):11488-96. doi: 10.1039/c5cp06224a.
6
Induced Structural Disorder as a Molecular Mechanism for Enzyme Dysfunction in Phosphoglucomutase 1 Deficiency.
J Mol Biol. 2016 Apr 24;428(8):1493-505. doi: 10.1016/j.jmb.2016.02.032. Epub 2016 Mar 10.
8
Phosphorylation in the catalytic cleft stabilizes and attracts domains of a phosphohexomutase.
Biophys J. 2015 Jan 20;108(2):325-37. doi: 10.1016/j.bpj.2014.12.003.
9
Resolving apparent conflicts between theoretical and experimental models of phosphate monoester hydrolysis.
J Am Chem Soc. 2015 Jan 28;137(3):1081-93. doi: 10.1021/ja5082712. Epub 2014 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验