Brás Natércia F, Fernandes Pedro A, Ramos Maria J, Schwartz Steven D
UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona, 85721, USA.
Chemistry. 2018 Feb 6;24(8):1978-1987. doi: 10.1002/chem.201705090. Epub 2018 Jan 4.
Human α-phosphoglucomutase 1 (α-PGM) catalyzes the isomerization of glucose-1-phosphate into glucose-6-phosphate (G6P) through two sequential phosphoryl transfer steps with a glucose-1,6-bisphosphate (G16P) intermediate. Given that the release of G6P in the gluconeogenesis raises the glucose output levels, α-PGM represents a tempting pharmacological target for type 2 diabetes. Here, we provide the first theoretical study of the catalytic mechanism of human α-PGM. We performed transition-path sampling simulations to unveil the atomic details of the two catalytic chemical steps, which could be key for developing transition state (TS) analogue molecules with inhibitory properties. Our calculations revealed that both steps proceed through a concerted S 2-like mechanism, with a loose metaphosphate-like TS. Even though experimental data suggests that the two steps are identical, we observed noticeable differences: 1) the transition state ensemble has a well-defined TS region and a late TS for the second step, and 2) larger coordinated protein motions are required to reach the TS of the second step. We have identified key residues (Arg23, Ser117, His118, Lys389), and the Mg ion that contribute in different ways to the reaction coordinate. Accelerated molecular dynamics simulations suggest that the G16P intermediate may reorient without leaving the enzymatic binding pocket, through significant conformational rearrangements of the G16P and of specific loop regions of the human α-PGM.
人α-磷酸葡萄糖变位酶1(α-PGM)通过两个连续的磷酸基转移步骤,以葡萄糖-1,6-二磷酸(G16P)为中间体,催化葡萄糖-1-磷酸异构化为葡萄糖-6-磷酸(G6P)。鉴于糖异生过程中G6P的释放会提高葡萄糖输出水平,α-PGM成为2型糖尿病颇具吸引力的药理学靶点。在此,我们首次对人α-PGM的催化机制进行了理论研究。我们进行了过渡路径采样模拟,以揭示这两个催化化学步骤的原子细节,这对于开发具有抑制特性的过渡态(TS)类似物分子可能至关重要。我们的计算表明,这两个步骤均通过类似协同S2的机制进行,具有一个松散的类偏磷酸过渡态。尽管实验数据表明这两个步骤是相同的,但我们观察到了明显的差异:1)过渡态系综具有明确的过渡态区域,且第二步的过渡态较靠后;2)达到第二步的过渡态需要更大程度的蛋白质协同运动。我们确定了以不同方式对反应坐标有贡献的关键残基(Arg23、Ser117、His118、Lys389)以及Mg离子。加速分子动力学模拟表明,G16P中间体可能通过G16P和人α-PGM特定环区域的显著构象重排,在不离开酶结合口袋的情况下重新定向。