Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461.
Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721.
Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6456-6461. doi: 10.1073/pnas.1704786114. Epub 2017 Jun 5.
Heavy-enzyme isotope effects (N-, C-, and H-labeled protein) explore mass-dependent vibrational modes linked to catalysis. Transition path-sampling (TPS) calculations have predicted femtosecond dynamic coupling at the catalytic site of human purine nucleoside phosphorylase (PNP). Coupling is observed in heavy PNPs, where slowed barrier crossing caused a normal heavy-enzyme isotope effect (/ > 1.0). We used TPS to design mutant F159Y PNP, predicted to improve barrier crossing for heavy F159Y PNP, an attempt to generate a rare inverse heavy-enzyme isotope effect (/ < 1.0). Steady-state kinetic comparison of light and heavy native PNPs to light and heavy F159Y PNPs revealed similar kinetic properties. Pre-steady-state chemistry was slowed 32-fold in F159Y PNP. Pre-steady-state chemistry compared heavy and light native and F159Y PNPs and found a normal heavy-enzyme isotope effect of 1.31 for native PNP and an inverse effect of 0.75 for F159Y PNP. Increased isotopic mass in F159Y PNP causes more efficient transition state formation. Independent validation of the inverse isotope effect for heavy F159Y PNP came from commitment to catalysis experiments. Most heavy enzymes demonstrate normal heavy-enzyme isotope effects, and F159Y PNP is a rare example of an inverse effect. Crystal structures and TPS dynamics of native and F159Y PNPs explore the catalytic-site geometry associated with these catalytic changes. Experimental validation of TPS predictions for barrier crossing establishes the connection of rapid protein dynamics and vibrational coupling to enzymatic transition state passage.
重酶同位素效应(N-、C-和 H-标记蛋白)探索与催化相关的质量依赖振动模式。过渡态抽样(TPS)计算预测了人嘌呤核苷磷酸化酶(PNP)催化部位的飞秒动态耦合。在重 PNP 中观察到了耦合,其中较慢的势垒穿越导致正常的重酶同位素效应(/ > 1.0)。我们使用 TPS 设计了突变 F159Y PNP,预计这将改善重 F159Y PNP 的势垒穿越,试图产生罕见的反向重酶同位素效应(/ < 1.0)。轻和重天然 PNP 与轻和重 F159Y PNP 的稳态动力学比较表明,它们具有相似的动力学特性。F159Y PNP 中的预稳态化学被减缓了 32 倍。预稳态化学比较了轻和重天然 PNP 和 F159Y PNP,发现天然 PNP 的正常重酶同位素效应为 1.31,而 F159Y PNP 的反向效应为 0.75。F159Y PNP 中增加的同位素质量导致过渡态形成更有效率。对重 F159Y PNP 的反向同位素效应的独立验证来自于对催化实验的承诺。大多数重酶表现出正常的重酶同位素效应,而 F159Y PNP 是一个罕见的反向效应的例子。天然和 F159Y PNP 的晶体结构和 TPS 动力学探索了与这些催化变化相关的催化部位几何形状。TPS 对势垒穿越预测的实验验证确立了快速蛋白质动力学和振动耦合与酶过渡态通过的联系。