Suppr超能文献

镍纳米线中机械驱动的晶界形成。

Mechanically Driven Grain Boundary Formation in Nickel Nanowires.

机构信息

Beijing Key Lab of Microstructure and Property of Advanced Material, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology , Beijing 100124, China.

Materials Engineering, The University of Queensland , Brisbane QLD 4072, Australia.

出版信息

ACS Nano. 2017 Dec 26;11(12):12500-12508. doi: 10.1021/acsnano.7b06605. Epub 2017 Nov 22.

Abstract

Metallic nanomaterials are widely used in micro/nanodevices. However, the mechanically driven microstructure evolution in these nanomaterials is not clearly understood, particularly when large stress and strain gradients are present. Here, we report the in situ bending experiment of Ni nanowires containing nanoscale twin lamellae using high-resolution transmission electron microscopy. We found that the large, localized bending deformation of Ni nanowires initially resulted in the formation of a low-angle tilt grain boundary (GB), consisting of randomly distributed dislocations in a diffuse GB layer. Further bending intensified the local plastic deformation and thus led to the severe distortion and collapse of local lattice domains in the GB region, thereby transforming a low-angle GB to a high-angle GB. Atomistic simulations, coupled with in situ atomic-scale imaging, unravelled the roles of bending-induced strain gradients and associated geometrically necessary dislocations in GB formation. These results offer a valuable understanding of the mechanically driven microstructure changes in metallic nanomaterials through GB formation. The work also has implications for refining the grains in bulk nanocrystalline materials.

摘要

金属纳米材料被广泛应用于微纳器件中。然而,当存在较大的应力和应变梯度时,这些纳米材料中机械驱动的微观结构演化仍不明确。在此,我们通过高分辨透射电子显微镜,对含有纳米尺度孪晶的镍纳米线的原位弯曲实验进行了报道。我们发现,镍纳米线的大局部弯曲变形首先导致形成一个小角度倾斜晶界(GB),该晶界由弥散层中随机分布的位错组成。进一步的弯曲加剧了局部塑性变形,从而导致晶界区域局部晶格域的严重扭曲和崩塌,从而将小角度晶界转变为大角度晶界。原子模拟结合原位原子尺度成像揭示了弯曲诱导应变梯度和相关的位错在晶界形成中的作用。这些结果为通过晶界形成理解金属纳米材料的机械驱动微观结构变化提供了有价值的认识。这项工作对于细化体纳米晶材料中的晶粒也具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验