Suppr超能文献

噬菌体早期和晚期基因的密码子使用偏好性存在显著差异:比较基因组学分析。

Significant differences in terms of codon usage bias between bacteriophage early and late genes: a comparative genomics analysis.

机构信息

Department of Biomedical Engineering, Tel-Aviv University, Ramat Aviv, Israel.

SynVaccineLtd. Ramat Hachayal, Tel Aviv, Israel.

出版信息

BMC Genomics. 2017 Nov 13;18(1):866. doi: 10.1186/s12864-017-4248-7.

Abstract

BACKGROUND

Viruses undergo extensive evolutionary selection for efficient replication which effects, among others, their codon distribution. In the current study, we aimed at understanding the way evolution shapes the codon distribution in early vs. late viral genes in terms of their expression during different stages in the viral replication cycle. To this end we analyzed 14 bacteriophages and 11 human viruses with available information about the expression phases of their genes.

RESULTS

We demonstrated evidence of selection for distinct composition of synonymous codons in early and late viral genes in 50% of the analyzed bacteriophages. Among others, this phenomenon may be related to the time specific adaptation of the viral genes to the translation efficiency factors involved at different bacteriophage developmental stages. Specifically, we showed that the differences in codon composition in different temporal gene groups cannot be explained only by phylogenetic proximities between the analyzed bacteriophages, and can be partially explained by differences in the adaptation to the host tRNA pool, nucleotide bias, GC content and more. In contrast, no difference in temporal regulation of synonymous codon usage was observed in human viruses, possibly because of a stronger selection pressure due to a larger effective population size in bacteriophages and their bacterial hosts.

CONCLUSIONS

The codon distribution in large fractions of bacteriophage genomes tend to be different in early and late genes. This phenomenon seems to be related to various aspects of the viral life cycle, and to various intracellular processes. We believe that the reported results should contribute towards better understanding of viral evolution and may promote the development of relevant procedures in synthetic virology.

摘要

背景

病毒在复制过程中经历了广泛的进化选择,以提高其效率,这影响了它们的密码子分布。在本研究中,我们旨在从病毒复制周期不同阶段的表达角度,了解进化如何影响早期和晚期病毒基因的密码子分布。为此,我们分析了 14 种噬菌体和 11 种人类病毒,这些病毒的基因表达阶段都有相关信息。

结果

我们证明了在 50%的分析噬菌体中,早期和晚期病毒基因的同义密码子组成存在选择的证据。其中,这种现象可能与病毒基因在不同噬菌体发育阶段对翻译效率因子的特定时间适应性有关。具体来说,我们表明,不同时间基因组之间密码子组成的差异不能仅通过分析噬菌体之间的系统发育关系来解释,部分可以通过对宿主 tRNA 池、核苷酸偏好性、GC 含量等的适应性差异来解释。相比之下,在人类病毒中,没有观察到同义密码子使用的时间调节差异,这可能是由于噬菌体及其细菌宿主的有效种群大小较大,因此选择压力更强。

结论

噬菌体基因组的大部分区域中,早期和晚期基因的密码子分布倾向于不同。这种现象似乎与病毒生命周期的各个方面以及各种细胞内过程有关。我们相信,所报道的结果将有助于更好地理解病毒进化,并可能促进合成病毒学中相关程序的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba76/5683454/bf7226984ff3/12864_2017_4248_Fig1_HTML.jpg

相似文献

3
Genome landscapes and bacteriophage codon usage.
PLoS Comput Biol. 2008 Feb 29;4(2):e1000001. doi: 10.1371/journal.pcbi.1000001.
5
Comparison of synonymous codon distribution patterns of bacteriophage and host genomes.
DNA Res. 1998 Dec 31;5(6):319-26. doi: 10.1093/dnares/5.6.319.
6
Adaptation of Borrelia burgdorferi to its natural hosts by synonymous codon and amino acid usage.
J Basic Microbiol. 2018 May;58(5):414-424. doi: 10.1002/jobm.201700652. Epub 2018 Mar 13.
7
Comparative characterization analysis of synonymous codon usage bias in classical swine fever virus.
Microb Pathog. 2017 Jun;107:368-371. doi: 10.1016/j.micpath.2017.04.019. Epub 2017 Apr 14.
8
Analysis of transcriptome data reveals multifactor constraint on codon usage in Taenia multiceps.
BMC Genomics. 2017 Apr 20;18(1):308. doi: 10.1186/s12864-017-3704-8.
9
The Evolution of Molecular Compatibility between Bacteriophage ΦX174 and its Host.
Sci Rep. 2018 May 29;8(1):8350. doi: 10.1038/s41598-018-25914-7.

引用本文的文献

1
Over time analysis of the codon usage of SARS-CoV-2 and its variants.
Comput Struct Biotechnol J. 2025 May 20;27:2034-2050. doi: 10.1016/j.csbj.2025.05.021. eCollection 2025.
3
Bacteriophage Infection of the Marine Bacterium Induces Dynamic Changes in tRNA Modifications.
Microorganisms. 2023 Jan 31;11(2):355. doi: 10.3390/microorganisms11020355.
5
Rethinking Phage Ecology by Rooting it Within an Established Plant Framework.
Phage (New Rochelle). 2020 Sep 1;1(3):121-136. doi: 10.1089/phage.2020.0015. Epub 2020 Sep 16.
6
Evolutionary dynamics of codon usages for peste des petits ruminants virus.
Front Vet Sci. 2022 Aug 12;9:968034. doi: 10.3389/fvets.2022.968034. eCollection 2022.
7
Rotavirus A Genome Segments Show Distinct Segregation and Codon Usage Patterns.
Viruses. 2021 Jul 27;13(8):1460. doi: 10.3390/v13081460.
9
Translational adaptation of human viruses to the tissues they infect.
Cell Rep. 2021 Mar 16;34(11):108872. doi: 10.1016/j.celrep.2021.108872.
10
The Paradoxes of Viral mRNA Translation during Mammalian Orthoreovirus Infection.
Viruses. 2021 Feb 11;13(2):275. doi: 10.3390/v13020275.

本文引用的文献

1
A code for transcription elongation speed.
RNA Biol. 2018 Jan 2;15(1):81-94. doi: 10.1080/15476286.2017.1384118. Epub 2017 Nov 22.
3
stAIcalc: tRNA adaptation index calculator based on species-specific weights.
Bioinformatics. 2017 Feb 15;33(4):589-591. doi: 10.1093/bioinformatics/btw647.
4
Herpesvirus Late Gene Expression: A Viral-Specific Pre-initiation Complex Is Key.
Front Microbiol. 2016 Jun 6;7:869. doi: 10.3389/fmicb.2016.00869. eCollection 2016.
5
Transcription regulation mechanisms of bacteriophages: recent advances and future prospects.
Bioengineered. 2014 Sep-Oct;5(5):300-4. doi: 10.4161/bioe.32110.
6
The effect of tRNA levels on decoding times of mRNA codons.
Nucleic Acids Res. 2014 Aug;42(14):9171-81. doi: 10.1093/nar/gku646. Epub 2014 Jul 23.
7
Modelling the efficiency of codon-tRNA interactions based on codon usage bias.
DNA Res. 2014 Oct;21(5):511-26. doi: 10.1093/dnares/dsu017. Epub 2014 Jun 6.
8
Insights into RNA structure and function from genome-wide studies.
Nat Rev Genet. 2014 Jul;15(7):469-79. doi: 10.1038/nrg3681. Epub 2014 May 13.
9
Genetic code redundancy and its influence on the encoded polypeptides.
Comput Struct Biotechnol J. 2012 Mar 20;1:e201204006. doi: 10.5936/csbj.201204006. eCollection 2012.
10
CpG usage in RNA viruses: data and hypotheses.
PLoS One. 2013 Sep 23;8(9):e74109. doi: 10.1371/journal.pone.0074109. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验